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Abstract

The ability to perceive the 3D shape of the environment is a basic ability for a robot.

We present an algorithm to convert standard digital pictures into 3D models.

This is a challenging problem, since an image is formed by a projection of the 3D

scene onto two dimensions, thus losing the depth information. We take a supervised

learning approach to this problem, and use a Markov Random Field (MRF) to model

the scene depth as a function of the image features. We show that, even on unstruc-

tured scenes of a large variety of environments, our algorithm is frequently able to

recover accurate 3D models.

We then apply our methods to robotics applications: (a) obstacle avoidance for

autonomously driving a small electric car, and (b) robot manipulation, where we

develop vision-based learning algorithms for grasping novel objects. This enables our

robot to perform tasks such as open new doors, clear up cluttered tables, and unload

items from a dishwasher.
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Chapter 1

Introduction

Modern-day robots can be carefully hand-programmed to perform many amazing

tasks, such as assembling cars in a factory. However, it remains a challenging problem

for robots to operate autonomously in unconstrained and unknown environments,

such as the home or office. For example, consider the task of getting a robot to

unload novel items from a dishwasher. While it is possible today to manually joystick

(tele-operate) a robot to do this task, it is well beyond the state of the art to do

this autonomously. For example, even having a robot recognize that a mug should be

picked up by its handle is difficult, particularly if the mug has not been seen before by

the robot. A key challenge in robotics is the ability to perceive novel environments,

in order to take an action.

One of the most basic perception abilities for a robot is perceiving the 3D shape

of an environment. This is useful for both navigation and manipulation. In this

dissertation, we will first describe learning algorithms for depth perception using a

single still image.

1.1 Depth perception from a single image

Cameras are inexpensive and widely available. Most work on depth perception has

focused on methods that use multiple images and triangulation, such as stereo vision.

In this work however, we were interested in the problem of estimating depths from

1
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Figure 1.1: (a) A single still image, and (b) the corresponding depths. Our goal is to
estimate the depths given a single image.

a single image (see Fig. 1.1). This has traditionally been considered an impossible

problem in computer vision; and while this problem is indeed impossible in a narrow

mathematical sense, it is nonetheless a problem that humans solve fairly well. We

would like our robots to have a similar ability to perceive depth from one image.

In addition to being a problem that is interesting and important in its own right,

single-image depth perception also has significant advantages over stereo in terms of

cost and of scaling to significantly greater distances.

In order to estimate depths from an image, humans use a number of monocular

(single image) cues such as texture variations, texture gradients, interposition, occlu-

sion, known object sizes, light and shading, haze, defocus, etc. [9] For example, many

objects’ texture will look different at different distances from the viewer. In another

example, a tiled floor with parallel lines will appear to have tilted lines in an image.

The distant patches will have larger variations in the line orientations, and nearby

patches with almost parallel lines will have smaller variations in line orientations.

Similarly, a grass field when viewed at different distances will have different texture

gradient distributions. There are a number of other patterns that we have learned

to estimate depth from image features. For example, a large blue patch in the upper

part of scene is more likely to be sky. In the past, researchers have designed algo-

rithms to estimate 3D structure from a single image for a few very specific settings.
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Nagai et al. [98] used Hidden Markov Models to performing surface reconstruction

from single images for known, fixed objects such as hands and faces. Criminsi et

al. [21] compute aspects of geometry of the scene using vanishing points and parallel

lines in the image. However, this method works only for images with clear parallel

lines such as manhattan-type environments and fails on the general scenes that we

consider.

In order to learn some of these patterns, we have developed a machine learning

algorithm. Our method uses a supervised learning algorithm, which learns to estimate

depths directly as a function of visual image features. These features are obtained

from a number of low-level features computed at each point in the image. We used a

3D scanner to collect training data, which comprised a large set of images and their

corresponding ground-truth depths. Using this training set, we model the conditional

distribution of the depth at each point in the image given the monocular image

features.

However, local image cues alone are usually insufficient to infer the 3D structure.

For example, both blue sky and a blue object would give similar local features; hence

it is difficult to estimate depths from local features alone.

Our ability to “integrate information” over space, i.e. understand the relation

between different parts of the image, is crucial to understanding the scene’s 3D struc-

ture. For example, even if part of an image is a homogeneous, featureless, gray patch,

one is often able to infer its depth by looking at nearby portions of the image, so as

to recognize whether this patch is part of a sidewalk, a wall, etc. Therefore, in our

model we will also capture relations between different parts of the image. For this,

we use a machine learning technique called Markov Random Field that models the

statistical correlations between the labels of neighboring regions.

Our algorithm was able to accurately estimate depths from images of a wide

variety of environments. We also studied the performance of our algorithm through

a live deployment in the form of a web service called Make3D. Tens of thousands of

users have successfully used it to automatically convert their own pictures into 3D

models.

A 3D model built from a single image will almost invariably be an incomplete
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model of the scene, because many portions of the scene will be missing or occluded.

We then consider 3D reconstruction from multiple views. Such views are available

in many scenarios. For example, robot(s) may be able to take images from different

viewpoints while performing a task. In another example, consider the few pictures

taken by a tourist of a scene from a few different places.

Given such sparse set of images of a scene, it is sometimes possible to construct

a 3D model using techniques such as structure from motion (SFM) [33, 117], which

start by taking two or more photographs, then find correspondences between the

images, and finally use triangulation to obtain 3D locations of the points. If the

images are taken from nearby cameras (i.e., if the baseline distance is small), then

these methods often suffer from large triangulation errors for points far-away from

the camera. (I.e., the depth estimates will tend to be inaccurate for objects at large

distances, because even small errors in triangulation will result in large errors in

depth.) If, conversely, one chooses images taken far apart, then often the change of

viewpoint causes the images to become very different, so that finding correspondences

becomes difficult, sometimes leading to spurious or missed correspondences. (Worse,

the large baseline also means that there may be little overlap between the images, so

that few correspondences may even exist.) These difficulties make purely geometric

3D reconstruction algorithms fail in many cases, specifically when given only a small

set of images.

However, when tens of thousands of pictures are available—for example, for frequently-

photographed tourist attractions such as national monuments—one can use the in-

formation present in many views to reliably discard images that have only few corre-

spondence matches. Doing so, one can use only a small subset of the images available,

and still obtain a “3D point cloud” for points that were matched using SFM. This

approach has been very successfully applied to famous buildings such as the Notre

Dame; the computational cost of this algorithm was significant, and required about

a week on a cluster of computers [164].

In the specific case of images taken from a pair of stereo cameras, the depths

are estimated by triangulation using the two images. Over the past few decades,

researchers have developed very good stereo vision systems (see [155] for a review).
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Although these systems work well in many environments, stereo vision is fundamen-

tally limited by the baseline distance between the two cameras. Specifically, their

depth estimates tend to be inaccurate when the distances considered are large (be-

cause even very small triangulation/angle estimation errors translate to very large

errors in distances). Further, stereo vision also tends to fail for textureless regions

of images where correspondences cannot be reliably found. One of the reasons that

such methods (based on purely geometric triangulation) often fail is that they do not

take the monocular cues (i.e., information present in the single image) into account.

On the other hand, humans perceive depth by seamlessly combining monocular

cues with stereo cues. We believe that monocular cues and (purely geometric) stereo

cues give largely orthogonal, and therefore complementary, types of information about

depth. Stereo cues are based on the difference between two images and do not depend

on the content of the image. Even if the images are entirely random, it would still

generate a pattern of disparities (e.g., random dot stereograms [9]). On the other

hand, depth estimates from monocular cues are entirely based on the evidence about

the environment presented in a single image.

In this dissertation, we investigate how monocular cues can be integrated with

any reasonable stereo system, to obtain better depth estimates than the stereo system

alone. Our learning algorithm models the depths as a function of single image features

as well as the depth obtained from stereo triangulation if available, and combines

them to obtain better depth estimates. We then also consider creating 3D models

from multiple views (which are not necessarily from a calibrated stereo pair) to create

a larger 3D model.

1.2 Robot applications using vision

Consider the problem of a small robot trying to navigate through a cluttered en-

vironment, for example, a small electric car through a forest (see Figure 1.2). For

small-sized robots, the size places a frugal payload restriction on weight and power

supply. In these robots, only light-weight small sensors that take less power could be

used. Cameras are an attractive option because they are small, passive sensors with
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low power requirements.

In the problem of high-speed navigation and obstacle avoidance for a small car,

we have applied our ideas of single image depth perception to obstacle avoidance. We

had two other motivations for this work: First, we believe that single-image monoc-

ular cues have not been effectively used in most obstacle detection systems; thus we

consider it an important open problem to develop methods for obstacle detection that

exploit these monocular cues. Second, the dynamics and inertia of high speed driving

(5m/s on a small remote control car) means that obstacles must be perceived at a

distance if we are to avoid them, and the distance at which standard binocular vision

algorithms can perceive them is fundamentally limited by the “baseline” distance be-

tween the two cameras and the noise in the observations, and thus difficult to apply

to this problem.

Figure 1.2: The remote-controlled car driven autonomously in various cluttered un-
constrained environments, using our algorithm.

For obstacle avoidance for a car, the problem simplifies to estimating the distances

to the nearest obstacles in each driving direction (i.e., each column in the image).

We use supervised learning to train such a system, and feed the output of this vision

system into a higher level controller trained using reinforcement learning. Our method

was able to avoid obstacles and drive autonomously in novel environments in various

locations.



1.2. ROBOT APPLICATIONS USING VISION 7

1.2.1 Robot grasping

We then consider the problem of grasping novel objects. Grasping is an important

ability for robots and is necessary in many tasks, such as for household robots cleaning

up a room or unloading items from a dishwasher.

If we are trying to grasp a previously known object, and we are given a full and

accurate 3D model of the object, then for grasping one can build physics-based models,

which model the contact forces using known geometry of the hand and the object in

order to compute stable grasps, i.e., the grasps with complete restraint. A grasp with

complete restraint prevents loss of contact and thus is very secure. A form-closure of

a solid object is a finite set of wrenches (force-moment combinations) applied on the

object, with the property that any other wrench acting on the object can be balanced

by a positive combination of the original ones [85]. Intuitively, form closure is a way

of defining the notion of a “firm grip” of the object [82]. It gurantees maintenance

of contact as long as the links of the hand and the object are well approximated as

rigid and as long as the joint actuators are sufficiently strong [123]. [75] proposed

an efficient algorithm for computing all n-finger form-closure grasps on a polygonal

object based on a set of sufficient and necessary conditions for form-closure.

The primary difference between form-closure and force-closure grasps is that force-

closure relies on contact friction. This translates into requiring fewer contacts to

achieve force-closure than form-closure [73, 47, 90]. A number of researches the

conditions necessary (and sufficient) for form- and force-closure, e.g., [131, 102, 119,

120, 6]. Some of these methods also analyze the dynamics using precise friction

modeling at the contact point (called friction cones, [85]).

However, in practical scenarios it is often very difficult to obtain a full and accurate

3D reconstruction of an object, specially the ones seen for the first time through vision.

For stereo systems, 3D reconstruction is difficult for objects without texture, and even

when stereopsis works well, it would typically reconstruct only the visible portions of

the object. Even if more specialized sensors such as laser scanners (or active stereo)

are used to estimate the object’s shape, we would still only have a 3D reconstruction

of the front face of the object.

In contrast to these approaches, we propose a learning algorithm that neither
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(a) Our robot unloading items from a
dishwasher.

(b) Grasping in cluttered environment with a
multi-fingered hand

requires, nor tries to build, a 3D model of the object. Instead it predicts, directly

as a function of the images, a point at which to grasp the object. Informally, the

algorithm takes two or more pictures of the object, and then tries to identify a point

within each 2-d image that corresponds to a good point at which to grasp the object.

(For example, if trying to grasp a coffee mug, it might try to identify the mid-point

of the handle.) Given these 2-d points in each image, we use triangulation to obtain

a 3D position at which to actually attempt the grasp. Thus, rather than trying to

triangulate every single point within each image in order to estimate depths—as in

dense stereo—we only attempt to triangulate one (or at most a small number of)

points corresponding to the 3D point where we will grasp the object. This allows

us to grasp an object without ever needing to obtain its full 3D shape, and applies

even to textureless, translucent or reflective objects on which standard stereo 3D

reconstruction fares poorly.

We test our method on grasping a number of common office and household objects

such as toothbrushes, pens, books, cellphones, mugs, martini glasses, jugs, keys, knife-

cutters, duct-tape rolls, screwdrivers, staplers and markers. We also test our method

on the task of unloading novel items from dishwashers (see Figure 1.2.1a).
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We then consider grasping with more general robot hands where one has to not

only infer the “point” at which to grasp the object, but also address the high dof

problem of choosing the positions of all the fingers in a multi-fingered hand. This work

also focused on the problem of grasping novel objects, in the presence of significant

amounts of clutter. (See Figure 1.2.1b.)

Our approach begins by computing a number of features of grasp quality, using

both 2-d image and the 3D point cloud features. For example, the 3D data (obtained

from 3D sensors such as stereo vision) is used to compute a number of grasp quality

metrics, such as the degree to which the fingers are exerting forces normal to the

surfaces of the object, and the degree to which they enclose the object. Using such

features, we then apply a supervised learning algorithm to estimate the degree to

which different configurations of the full arm and fingers reflect good grasps.

Our grasp planning algorithm that relied on long range vision sensors (such as

cameras, Swiss Ranger), errors and uncertainty ranging from small deviations in the

object’s location to occluded surfaces significantly limited the reliability of these open-

loop grasping strategies. Therefore, we also present new optical proximity sensors

mounted on robot hand’s fingertips and learning algorithms to enable the robot to

reactively adjust the grasp. These sensors are a very useful complement to long-range

sensors (such as vision and 3D cameras), and provide a sense of “pre-touch” to the

robot, thus helping in the grasping performance.

We also present an application of our algorithms to opening new doors. Most

prior work in door opening (e.g., [122, 110]) assumes that a detailed 3D model of the

door (and door handle) is available, and focuses on developing the control actions

required to open one specific door. In practice, a robot must rely on only its sensors

to perform manipulation in a new environment. In our work, we present a learning

algorithm to enable our robot to autonomously navigate anywhere in a building by

opening doors, even those it has never seen before.
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1.3 First published appearances of the described

contributions

Most contributions described in this thesis have first appeared as various publications:

• Chapter 2: Saxena, Chung, and Ng [134, 135], Saxena, Sun, and Ng [149, 152,

151], Heitz, Gould, Saxena, and Koller [43]

• Chapter 3: Saxena, Schulte, and Ng [146], Saxena, Sun, and Ng [150], Saxena,

Chung, and Ng [135], Saxena, Sun, and Ng [152]

• Chapter 4: Michels, Saxena, and Ng [88], Saxena, Chung, and Ng [135]

• Chapter 5: Saxena, Driemeyer, Kearns, Osondu, and Ng [138], Saxena, Driemeyer,

Kearns, and Ng [136], Saxena, Wong, Quigley, and Ng [154], Saxena, Driemeyer,

and Ng [141, 140],

• Chapter 6: Saxena, Wong, and Ng [153], Klingbeil, Saxena, and Ng [64], Hsiao,

Nangeroni, Huber, Saxena, and Ng [51]

The following contributions have appeared as various publications: Saxena, Driemeyer,

and Ng [141], Saxena and Ng [144], Saxena, Gupta, and Mukerjee [142], Saxena,

Gupta, Gerasimov, and Ourselin [143], Saxena and Singh [147], Saxena, Srivatsan,

Saxena, and Verma [148], Saxena, Ray, and Varma [145], Soundararaj, Sujeeth, and

Saxena [165]. However, they are beyond the scope of this dissertation, and therefore

are not discussed here.



Chapter 2

Single Image Depth Reconstruction

2.1 Introduction

Upon seeing an image such as Fig. 2.1a, a human has no difficulty in estimating the 3D

depths in the scene (Fig. 2.1b). However, inferring such 3D depth remains extremely

challenging for current computer vision systems. Indeed, in a narrow mathematical

sense, it is impossible to recover 3D depth from a single image, since we can never

know if it is a picture of a painting (in which case the depth is flat) or if it is a picture

of an actual 3D environment. Yet in practice people perceive depth remarkably well

given just one image; we would like our computers to have a similar sense of depths

in a scene.

Recovering 3D depth from images has important applications in robotics, scene

understanding and 3D reconstruction. Most work on visual 3D reconstruction has

focused on binocular vision (stereopsis, i.e., methods using two images) [155] and on

other algorithms that require multiple images, such as structure from motion [33]

and depth from defocus [23]. These algorithms consider only the geometric (tri-

angulation) differences. Beyond stereo/triangulation cues, there are also numerous

monocular cues—such as texture variations and gradients, defocus, color/haze, etc.—

that contain useful and important depth information. Even though humans perceive

depth by seamlessly combining many of these stereo and monocular cues, most work

on depth estimation has focused on stereo vision.

11
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Figure 2.1: (a) A single still image, and (b) the corresponding (ground-truth)
depthmap. Colors in the depthmap indicate estimated distances from the camera.

Depth estimation from a single still image is a difficult task, since depth typically

remains ambiguous given only local image features. Thus, our algorithms must take

into account the global structure of the image, as well as use prior knowledge about

the scene. We also view depth estimation as a small but crucial step towards the

larger goal of image understanding, in that it will help in tasks such as understanding

the spatial layout of a scene, finding walkable areas in a scene, detecting objects, etc.

We apply supervised learning to the problem of estimating depths (Fig. 2.1b) from a

single still image (Fig. 2.1a) of a variety of unstructured environments, both indoor

and outdoor, containing forests, sidewalks, buildings, people, bushes, etc.

Our approach is based on modeling depths and relationships between depths at

multiple spatial scales using a hierarchical, multiscale Markov Random Field (MRF).

Taking a supervised learning approach to the problem of depth estimation, we used a

3D scanner to collect training data, which comprised a large set of images and their

corresponding ground-truth depths. (This data has been made publically available

on the internet at: http://make3d.stanford.edu) Using this training set, we model the

conditional distribution of the depth at each point in the image given the monocular
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image features.

Next, we present another approach in which we use the insight that most 3D

scenes can be segmented into many small, approximately planar surfaces.1 Our algo-

rithm begins by taking an image, and attempting to segment it into many such small

planar surfaces. Using a segmentation algorithm, [32] we find an over-segmentation

of the image that divides it into many small regions (superpixels). An example of

such a segmentation is shown in Fig. 2.2b. Because we use an over-segmentation,

planar surfaces in the world may be broken up into many superpixels; however, each

superpixel is likely to (at least approximately) lie entirely on only one planar surface.

For each superpixel, our algorithm then tries to infer the 3D position and orien-

tation of the 3D surface that it came from. This 3D surface is not restricted to just

vertical and horizontal directions, but can be oriented in any direction. Inferring 3D

position from a single image is non-trivial, and humans do it using many different

visual depth cues, such as texture (e.g., grass has a very different texture when viewed

close up than when viewed far away); color (e.g., green patches are more likely to be

grass on the ground; blue patches are more likely to be sky). Our algorithm uses

supervised learning to learn how different visual cues like these are associated with

different depths. Our learning algorithm uses a Markov random field model, which

is also able to take into account constraints on the relative depths of nearby super-

pixels. For example, it recognizes that two adjacent image patches are more likely to

be at the same depth, or to be even co-planar, than being very far apart. Though

learning in our MRF model is approximate, MAP inference is tractable via linear

programming.

Having inferred the 3D position of each superpixel, we can now build a 3D mesh

model of a scene (Fig. 2.2c). We then texture-map the original image onto it to build

a textured 3D model (Fig. 2.2d) that we can fly through and view at different angles.

This chapter is organized as follows. Section 2.2 gives an overview of various meth-

ods used for 3D depth reconstruction. Section 2.3 describes some of the visual cues

used by humans for depth perception, and Section 2.4 describes the image features

1Indeed, modern computer graphics using OpenGL or DirectX models extremely complex scenes
this way, using triangular facets to model even very complex shapes.
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Figure 2.2: (a) An original image. (b) Oversegmentation of the image to obtain
“superpixels”. (c) The 3D model predicted by the algorithm. (d) A screenshot of the
textured 3D model.
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used to capture monocular cues. We describe our first probabilistic model, which

models depths at each point in the image, in Section 2.5. We then present a second

representation, based on planes, in Section 2.8, followed by its probabilistic model

in Section 2.10. In Section 2.11, we describe our setup for collecting aligned image

and laser data. The results of depth prediction on single images are presented in Sec-

tion 2.12, 2.13 and 2.14. We then also describe how to incorporate object information

in Section 2.15.

2.2 Related work

Although our work mainly focuses on depth estimation from a single still image, there

are many other 3D reconstruction techniques, such as: explicit measurements with

laser or radar sensors [124], using two (or more than two) images [155], and using video

sequences [20]. Among the vision-based approaches, most work has focused on stereo

vision (see [155] for a review), and on other algorithms that require multiple images,

such as optical flow [3], structure from motion [33] and depth from defocus [23]. Frueh

and Zakhor [35] constructed 3d city models by merging ground-based and airborne

views. A large class of algorithms reconstruct the 3D shape of known objects, such

as human bodies, from images and laser data [175, 2]. Structured lighting [156] offers

another method for depth reconstruction

For a few specific settings, several authors have developed methods for depth

estimation from a single image. Examples include shape-from-shading [186, 79] and

shape-from-texture [81, 74]; however, these methods are difficult to apply to surfaces

that do not have fairly uniform color and texture. Nagai et al. [98] used Hidden

Markov Models to performing surface reconstruction from single images for known,

fixed objects such as hands and faces. Hassner and Basri [41] used an example-based

approach to estimate depth of an object from a known object class. Han and Zhu [40]

performed 3D reconstruction for known specific classes of objects placed in untextured

areas.

In work contemporary to ours, Delage, Lee and Ng (DLN) [25, 26] and Hoiem,

Efros and Hebert (HEH) [46] assumed that the environment is made of a flat ground
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with vertical walls. DLN considered indoor images, while HEH considered outdoor

scenes. They classified the image into horizontal/ground and vertical regions (also

possibly sky) to produce a simple “pop-up” type fly-through from an image. Their

method, which assumes a simple “ground-vertical” structure of the world, fails on

many environments that do not satisfy this assumption and also does not give accurate

metric depthmaps.

There are some algorithms that can perform depth reconstruction from single im-

ages in very specific settings. Methods such as shape from shading [186, 79] and shape

from texture [74, 81, 80] generally assume uniform color and/or texture,2 and hence

would perform very poorly on the complex, unconstrained, highly textured images

that we consider. Hertzmann et al. [44] reconstructed high quality 3D models from

several images, but they required that the images also contain “assistant” objects of

known shapes next to the target object. Torresani et al. [178] worked on reconstruct-

ing non-rigid surface shapes from video sequences. Torralba and Oliva [177] studied

the Fourier spectrum of the images to compute the mean depth of a scene.

Single view metrology [21] describes techniques that can be used to compute as-

pects of 3D geometry of a scene from a single perspective image. It assumes that

vanishing lines and points are known in a scene, and calculates angles between par-

allel lines to infer 3D structure from images of Manhattan-type environments. (See

Fig. 2.3.) On the other hand, our method is not restricted to Manhattan-type envi-

ronments and considers images of a large variety of environments.

Building on these concepts of single image 3D reconstruction, Hoiem, Efros and

Hebert [45] and Sudderth et al. [168] integrated learning-based object recognition

with 3D scene representations.

Our approach draws on a large number of ideas from computer vision such as

feature computation and multiscale representation of images. A variety of image

features and representations have been used by other authors, such as Gabor fil-

ters [100], wavelets [167], SIFT features [96], etc. Many of these image features are

2Also, most of these algorithms assume Lambertian surfaces, which means the appearance of the
surface does not change with viewpoint.
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Figure 2.3: In Single view metrology [21], heights are measured using parallel lines.
(Image reproduced with permission from [21].)

used for purposes such as recognizing objects [97, 160], faces [187], facial expres-

sions [133], grasps [138]; image segmentation [68], computing the visual gist of a

scene [103] and computing sparse representations of natural images [104]. Stereo and

monocular image features have been used together for object recognition and image

segmentation [67].

Beyond vision, machine learning has been successfully used for a number of other

ill-posed problems. In [144], we considered the problem of estimating the incident

angle of a sound, using a single microphone.

Our approach is based on learning a Markov Random Field (MRF) model. MRFs

are a workhorse of machine learning, and have been successfully applied to numerous

problems in which local features were insufficient and more contextual information

had to be used. Examples include image denoising [92], stereo vision [155], image

segmentation [32], range sensing [27], text segmentation [71], object classification [97],

and image labeling [42]. For the application of identifying man-made structures in

natural images, Kumar and Hebert used a discriminative random fields algorithm [70].

Since MRF learning is intractable in general, most of these models are trained using

pseudo-likelihood; sometimes the models’ parameters are also hand-tuned.

There is also ample prior work in 3D reconstruction from multiple images, as in

stereo vision and structure from motion. It is impossible for us to do this literature

justice here, but recent surveys include [155] and [78], and we discuss this work further

in Section 3.3.
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2.3 Monocular cues for depth perception

Images are formed by a projection of the 3D scene onto two dimensions. Thus, given

only a single image, the true depths are ambiguous, in that an image might represent

an infinite number of 3D structures. However, not all of these possible depths are

equally likely. The environment we live in is reasonably structured, and thus humans

are usually able to infer a (nearly) correct 3D structure, using prior experience.

Humans use numerous visual cues to perceive depth. Such cues are typically

grouped into four distinct categories: monocular, stereo, motion parallax, and focus

cues [76, 158]. Humans combine these cues to understand the 3D structure of the

world [181, 121, 185, 76]. Below, we describe these cues in more detail. Our proba-

bilistic model will attempt to capture a number of monocular cues (Section 2.5), as

well as stereo triangulation cues (Section 3.2).

There are a number of monocular cues such as texture variations, texture gradi-

ents, interposition, occlusion, known object sizes, light and shading, haze, defocus,

etc. [9] For example, many objects’ texture will look different at different distances

from the viewer. Texture gradients, which capture the distribution of the direction of

edges, also help to indicate depth [80]. For example, a tiled floor with parallel lines

will appear to have tilted lines in an image [21]. The distant patches will have larger

variations in the line orientations, and nearby patches with almost parallel lines will

have smaller variations in line orientations. Similarly, a grass field when viewed at

different distances will have different texture gradient distributions. Haze is another

depth cue, and is caused by atmospheric light scattering [99].

However, we note that local image cues alone are usually insufficient to infer the

3D structure. For example, both blue sky and a blue object would give similar local

features; hence it is difficult to estimate depths from local features alone.

The ability of humans to “integrate information” over space, i.e. understand the

relation between different parts of the image, is crucial to understanding the scene’s

3D structure [180, chap. 11]. For example, even if part of an image is a homogeneous,

featureless, gray patch, one is often able to infer its depth by looking at nearby

portions of the image, so as to recognize whether this patch is part of a sidewalk,
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Figure 2.4: The convolutional filters used for texture energies and gradients. The first
nine are 3x3 Laws’ masks. The last six are the oriented edge detectors spaced at 300

intervals. The nine Laws’ masks are used to perform local averaging, edge detection
and spot detection.

a wall, etc. Therefore, in our model we will also capture relations between different

parts of the image.

Humans recognize many visual cues, such that a particular shape may be a build-

ing, that the sky is blue, that grass is green, that trees grow above the ground and

have leaves on top of them, and so on. In our model, both the relation of monocular

cues to the 3D structure, as well as relations between various parts of the image,

will be learned using supervised learning. Specifically, our model will be trained to

estimate depths using a training set in which the ground-truth depths were collected

using a laser scanner.

2.4 Point-wise feature vector

Inspired in part by humans, we design features to capture some of the monocular

cues discussed in Section 2.3.

In our first approach, we divide the image into small rectangular patches (arranged

in a uniform grid), and estimate a single depth value for each patch.3 Note that

dividing an image into rectangular patches violates natural depth discontinuities,

therefore in our second method we will use the idea of over-segmented patches (see

Section 2.7). We use two types of features: absolute depth features—used to estimate

the absolute depth at a particular patch—and relative features, which we use to

estimate relative depths (magnitude of the difference in depth between two patches).

These features try to capture two processes in the human visual system: local feature

3The resolution of the grid could be made arbitarily high and be made equal to the resolution of
the image, thus we can depth value for each point in the image.
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processing (absolute features), such as that the sky is far away; and continuity features

(relative features), a process by which humans understand whether two adjacent

patches are physically connected in 3D and thus have similar depths.4

We chose features that capture three types of local cues: texture variations, tex-

ture gradients, and color. Texture information is mostly contained within the image

intensity channel [180],5 so we apply Laws’ masks [24, 88] to this channel to compute

the texture energy (Fig. 2.4). Haze is reflected in the low frequency information in

the color channels, and we capture this by applying a local averaging filter (the first

Laws’ mask) to the color channels.

Studies on monocular vision in humans strongly indicate that texture gradients

are an important cue in depth estimation. [185] When well-defined edges exist (e.g.,

scenes having regular structure like buildings and roads, or indoor scenes), vanishing

points can be calculated with a Hough transform to get a sense of distance. However,

outdoor scenes are highly irregular. To compute an estimate of texture gradient that

is robust to noise, we convolve the intensity channel with six oriented edge filters

(shown in Fig. 2.4). We thus rely on a large number of different types of features to

make our algorithm more robust and to make it generalize even to images that are

very different from the training set.

One can envision including more features to capture other cues. For example, to

model atmospheric effects such as fog and haze, features computed from the physics

of light scattering [99] could also be included. Similarly, one can also include features

based on surface-shading [79].

2.4.1 Features for absolute depth

We first compute summary statistics of a patch i in the image I(x, y) as follows.

We use the output of each of the 17 (9 Laws’ masks, 2 color channels and 6 texture

gradients) filters Fn, n = 1, ..., 17 as: Ei(n) =
∑

(x,y)∈patch(i) |I ∗ Fn|
k, where k ∈

4If two neighboring patches of an image display similar features, humans would often perceive
them to be parts of the same object, and therefore to have similar depth values.

5We represent each image in YCbCr color space, where Y is the intensity channel, and Cb and
Cr are the color channels.
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Figure 2.5: The absolute depth feature vector for a patch, which includes features
from its immediate neighbors and its more distant neighbors (at larger scales). The
relative depth features for each patch use histograms of the filter outputs.

{1, 2, 4} give the sum absolute energy, sum squared energy and kurtosis respectively.6

These are commonly used filters that capture the texture of a 3x3 patch and the edges

at various orientations. This gives us an initial feature vector of dimension 34.

To estimate the absolute depth at a patch, local image features centered on the

patch are insufficient, and one has to use more global properties of the image. We

attempt to capture this information by using image features extracted at multiple

spatial scales (image resolutions).7 (See Fig. 2.5.) Objects at different depths exhibit

very different behaviors at different resolutions, and using multiscale features allows

us to capture these variations [182]. For example, blue sky may appear similar at

different scales, but textured grass would not. In addition to capturing more global

information, computing features at multiple spatial scales also helps to account for

different relative sizes of objects. A closer object appears larger in the image, and

6We used k ∈ {1, 2} for point-wise features, but used k ∈ {2, 4} for segment-based features in
Section 2.9.1 because they gave better results.

7The patches at each spatial scale are arranged in a grid of equally sized non-overlapping regions
that cover the entire image. We use 3 scales in our experiments.
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hence will be captured in the larger scale features. The same object when far away

will be small and hence be captured in the small scale features. Features capturing

the scale at which an object appears may therefore give strong indicators of depth.

To capture additional global features (e.g. occlusion relationships), the features

used to predict the depth of a particular patch are computed from that patch as well as

the four neighboring patches. This is repeated at each of the three scales, so that the

feature vector at a patch includes features of its immediate neighbors, its neighbors

at a larger spatial scale (thus capturing image features that are slightly further away

in the image plane), and again its neighbors at an even larger spatial scale; this is

illustrated in Fig. 2.5. Lastly, many structures (such as trees and buildings) found in

outdoor scenes show vertical structure, in the sense that they are vertically connected

to themselves (things cannot hang in empty air). Thus, we also add to the features

of a patch additional summary features of the column it lies in.

For each patch, after including features from itself and its 4 neighbors at 3 scales,

and summary features for its 4 column patches, our absolute depth feature vector x

is 19 ∗ 34 = 646 dimensional.

2.4.2 Features for boundaries

We use a different feature vector to learn the dependencies between two neighboring

patches. Specifically, we compute a 10-bin histogram of each of the 17 filter outputs

|I ∗ Fn|, giving us a total of 170 features yis for each patch i at scale s. These

features are used to estimate how the depths at two different locations are related. We

believe that learning these estimates requires less global information than predicting

absolute depth, but more detail from the individual patches. For example, given

two adjacent patches of a distinctive, unique, color and texture, we may be able to

safely conclude that they are part of the same object, and thus that their depths

are close, even without more global features. Hence, our relative depth features yijs

for two neighboring patches i and j at scale s will be the differences between their

histograms, i.e., yijs = yis − yjs.
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Figure 2.6: The multiscale MRF model for modeling relation between features and
depths, relation between depths at same scale, and relation between depths at differ-
ent scales. (Only 2 out of 3 scales, and a subset of the edges, are shown.)

2.5 Point-wise probabilistic model

In this model, we use points in the image as basic unit, and infer only their 3D

location. The nodes in this MRF are a dense grid of points in the image, where

the value of each node represents its depth. We convert the depths to log scale for

emphasizing fractional (relative) errors in depth.

Since local images features are by themselves usually insufficient for estimating

depth, the model needs to reason more globally about the spatial structure of the

scene. We capture the spatial structure of the image by modeling the relationships

between depths in different parts of the image. Although the depth of a particular

patch depends on the features of the patch, it is also related to the depths of other
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parts of the image. For example, the depths of two adjacent patches lying in the

same building will be highly correlated. We will use a hierarchical multiscale Markov

Random Field (MRF) to model the relationship between the depth of a patch and

the depths of its neighboring patches (Fig. 2.6). In addition to the interactions with

the immediately neighboring patches, there are sometimes also strong interactions

between the depths of patches which are not immediate neighbors. For example,

consider the depths of patches that lie on a large building. All of these patches will

be at similar depths, even if there are small discontinuities (such as a window on

the wall of a building). However, when viewed at the smallest scale, some adjacent

patches are difficult to recognize as parts of the same object. Thus, we will also model

interactions between depths at multiple spatial scales.

2.5.1 Gaussian model

Our first model will be a jointly Gaussian Markov Random Field (MRF) as shown

in Eq. 2.1. To capture the multiscale depth relations, we will model the depths di(s)

for multiple scales s = 1, 2, 3. In our experiments, we enforce a hard constraint

that depths at a higher scale are the average of the depths at the lower scale.8 More

formally, we define di(s+1) = (1/5)
∑

j∈Ns(i)∪{i}
dj(s). Here, Ns(i) are the 4 neighbors

of patch i at scale s.9

In Eq. 2.1, M is the total number of patches in the image (at the lowest scale); Z

is the normalization constant for the model; xi is the absolute depth feature vector

for patch i; and θ and σ = {σ1, σ2} are parameters of the model.10 In detail, we use

different parameters (θr, σ1r, σ2r) for each row r in the image, because the images

we consider are taken from a horizontally mounted camera, and thus different rows

of the image have different statistical properties. For example, a blue patch might

8One can instead have soft constraints relating the depths at higher scale to depths at lower
scale. One can also envision putting more constraints in the MRF, such as that points lying on a
long straight edge in an image should lie on a straight line in the 3D model, etc.

9Our experiments using 8-connected neighbors instead of 4-connected neighbors yielded minor
improvements in accuracy at the cost of a much longer inference time.

10Here each σ2 represents the (empirical) variance of each term, and θ are the weights parameter-
izing the space of linear functions.
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represent sky if it is in upper part of image, and might be more likely to be water if

in the lower part of the image.

PG(d|X; θ, σ) =
1

ZG

exp
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Our model is a conditionally trained MRF, in that its model of the depths d is

always conditioned on the image features X; i.e., it models only P (d|X). We first

estimate the parameters θr in Eq. 2.1 by maximizing the conditional log likelihood

ℓ(d) = logP (d|X; θr) of the training data. Since the model is a multivariate Gaussian,

the maximum likelihood estimate of parameters θr is obtained by solving a linear least

squares problem.

The first term in the exponent above models depth as a function of multiscale

features of a single patch i. The second term in the exponent places a soft “constraint”

on the depths to be smooth. If the variance term σ2
2rs is a fixed constant, the effect of

this term is that it tends to smooth depth estimates across nearby patches. However,

in practice the dependencies between patches are not the same everywhere, and our

expected value for (di − dj)
2 may depend on the features of the local patches.

Therefore, to improve accuracy we extend the model to capture the “variance”

term σ2
2rs in the denominator of the second term as a linear function of the patches i

and j’s relative depth features yijs (discussed in Section 2.4.2). We model the variance

as σ2
2rs = uT

rs|yijs|. This helps determine which neighboring patches are likely to have

similar depths; for example, the “smoothing” effect is much stronger if neighboring

patches are similar. This idea is applied at multiple scales, so that we learn different

σ2
2rs for the different scales s (and rows r of the image). The parameters urs are

learned to fit σ2
2rs to the expected value of (di(s) − dj(s))

2, with a constraint that
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urs ≥ 0 (to keep the estimated σ2
2rs non-negative), using a quadratic program (QP).

Similar to our discussion on σ2
2rs, we also learn the variance parameter σ2

1r = vT
r xi

as a linear function of the features. Since the absolute depth features xi are non-

negative, the estimated σ2
1r is also non-negative. The parameters vr are chosen to fit

σ2
1r to the expected value of (di(r) − θT

r xi)
2, subject to vr ≥ 0. This σ2

1r term gives

a measure of the uncertainty in the first term, and depends on the features. This is

motivated by the observation that in some cases, depth cannot be reliably estimated

from the local features. In this case, one has to rely more on neighboring patches’

depths, as modeled by the second term in the exponent.

After learning the parameters, given a new test-set image we can find the MAP

estimate of the depths by maximizing Eq. 2.1 in terms of d. Since Eq. 2.1 is Gaussian,

logP (d|X; θ, σ) is quadratic in d, and thus its maximum is easily found in closed form

(taking at most 1-2 seconds per image). More details are given in Appendix 2.6.1.

2.5.2 Laplacian model

We now present a second model (Eq. 2.2) that uses Laplacians instead of Gaussians

to model the posterior distribution of the depths. Our motivation for doing so is

three-fold. First, a histogram of the relative depths (di − dj) is empirically closer

to Laplacian than Gaussian (Fig. 2.7, see [52] for more details on depth statistics),

which strongly suggests that it is better modeled as one.11 Second, the Laplacian

distribution has heavier tails, and is therefore more robust to outliers in the image

features and to errors in the training-set depthmaps (collected with a laser scanner; see

Section 2.11). Third, the Gaussian model was generally unable to give depthmaps

with sharp edges; in contrast, Laplacians tend to model sharp transitions/outliers

better [129].

This model is parametrized by θr (similar to Eq. 2.1) and by λ1r and λ2rs, the

Laplacian spread parameters. Maximum-likelihood parameter estimation for the

11Although the Laplacian distribution fits the log-histogram of multiscale relative depths reason-
ably well, there is an unmodeled peak near zero. This arises due to the fact that the neighboring
depths at the finest scale frequently lie on the same object.



2.5. POINT-WISE PROBABILISTIC MODEL 27

Figure 2.7: The log-histogram of relative depths. Empirically, the distribution of
relative depths is closer to Laplacian than Gaussian.

Laplacian model is not tractable (since the partition function depends on θr). How-

ever, by analogy to the Gaussian case, we approximate this by solving a linear system

of equations Xrθr ≈ dr to minimize L1 (instead of L2) error, i.e., minθr
||dr −Xrθr||1.

Here Xr is the matrix of absolute depth features. Following the Gaussian model, we

also learn the Laplacian spread parameters in the denominator in the same way, ex-

cept that the instead of estimating the expected values of (di−dj)
2 and (di(r)−θ

T
r xi)

2,

we estimate the expected values of |di − dj| and |di(r)− θT
r xi|, as a linear function of

urs and vr respectively. This is done using a Linear Program (LP), with urs ≥ 0 and

vr ≥ 0.

Even though maximum likelihood (ML) parameter estimation for θr is intractable

in the Laplacian model, given a new test-set image, MAP inference for the depths d is

tractable and convex. Details on solving the inference problem as a Linear Program

(LP) are given in Appendix 2.6.2.

Remark. We can also extend these models to combine Gaussian and Laplacian terms

in the exponent, for example by using a L2 norm term for absolute depth, and a L1

norm term for the interaction terms. MAP inference remains tractable in this setting,



28 CHAPTER 2. SINGLE IMAGE DEPTH RECONSTRUCTION

and can be solved using convex optimization as a QP (quadratic program).

2.6 MAP inference

2.6.1 Gaussian model

We can rewrite Eq. 2.1 as a standard multivariate Gaussian,

PG(d|X; θ, σ) =
1

ZG

exp

(

−
1

2
(d−Xaθr)

T Σ−1
a (d−Xaθr)

)

where Xa = (Σ−1
1 + QT Σ−1

2 Q)−1Σ−1
1 X, with Σ1 and Σ2 representing the matrices of

the variances σ2
1,i and σ2

2,i in the first and second terms in the exponent of Eq. 2.1

respectively.12 Q is a matrix such that rows of Qd give the differences of the depths

in the neighboring patches at multiple scales (as in the second term in the exponent

of Eq. 2.1). Our MAP estimate of the depths is, therefore, d∗ = Xaθr.

During learning, we iterate between learning θ and estimating σ. Empirically,

σ1 ≪ σ2, and Xa is very close to X; therefore, the algorithm converges after 2-3

iterations.

2.6.2 Laplacian model

Exact MAP inference of the depths d ∈ R
M can be obtained by maximizing logP (d|X; θ, λ)

in terms of d (Eq. 2.2). More formally,

d∗ = arg max
d

logP (d|X; θ, λ)

= arg min
d
cT1 |d−Xθr| + cT2 |Qd|

where, c1 ∈ R
M with c1,i = 1/λ1,i, and c2 ∈ R

6M with c2,i = 1/λ2,i. Our features

are given by X ∈ R
Mxk and the learned parameters are θr ∈ R

k, which give a naive

12Note that if the variances at each point in the image are constant, then Xa = (I +
σ2

1/σ2
2QT Q)−1X. I.e., Xa is essentially a smoothed version of X.
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estimate d̃ = Xθr ∈ R
M of the depths. Q is a matrix such that rows of Qd give

the differences of the depths in the neighboring patches at multiple scales (as in the

second term in the exponent of Eq. 2.2).

We add auxiliary variables ξ1 and ξ2 to pose the problem as a Linear Program

(LP):

d∗ = arg min
d,ξ1,ξ2

cT1 ξ1 + cT2 ξ2

s.t. −ξ1 ≤ d− d̃ ≤ ξ1

−ξ2 ≤ Qd ≤ ξ2

In our experiments, MAP inference takes about 7-8 seconds for an image.

2.7 Plane parametrization

In our first method, our patches were uniform in size and were arranged in a uniform

grid. However, often the structures in the image can be grouped into meaningful

regions (or segments). For example, all the patches on a large uniformly colored wall

would lie on the same plane and sometimes some regions consists of many planes at

different angles (such as trees). Therefore, we use the insight that most 3D scenes can

be segmented into many small, approximately planar surfaces (patches). Our method

starts by taking an image, and attempting to segment it into many such small planar

surfaces (see 2.8 for details). Note that in this case the patches are variable in size

and are not arranged into a uniform grid. (See Fig. 2.8.) Each of these small patches

will be our basic unit of representation (instead of using a uniform rectangular patch

earlier). Such representation follows natural depth discontinuities better, and hence

models the image better for the task of depth estimation.

In this method, other than assuming that the 3D structure is made up of a number

of small planes, we make no explicit assumptions about the structure of the scene.

This allows our approach to even apply to scenes with significantly richer structure

than only vertical surfaces standing on a horizontal ground, such as mountains, trees,
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Figure 2.8: (Left) An image of a scene. (Right) Oversegmented image. Each small
segment (superpixel) lies on a plane in the 3d world. (Best viewed in color.)

etc.

2.8 Representation

Our goal is to create a full photo-realistic 3D model from an image. Following most

work on 3D models in computer graphics and other related fields, we will use a

polygonal mesh representation of the 3D model, in which we assume the world is

made of a set of small planes.13 In detail, given an image of the scene, we first find

small homogeneous regions in the image, called “Superpixels” [32]. Each such region

represents a coherent region in the scene with all the pixels having similar properties.

(See Fig. 2.8.) Our basic unit of representation will be these small planes in the world,

and our goal is to infer the location and orientation of each one.

More formally, we parametrize both the 3D location and orientation of the infinite

plane on which a superpixel lies by using a set of plane parameters α ∈ R
3. (Fig. 2.9)

(Any point q ∈ R
3 lying on the plane with parameters α satisfies αT q = 1.) The value

1/|α| is the distance from the camera center to the closest point on the plane, and

13This assumption is reasonably accurate for most artificial structures, such as buildings. Some
natural structures such as trees could perhaps be better represented by a cylinder. However, since
our models are quite detailed, e.g., about 2000 planes for a small scene, the planar assumption works
quite well in practice.
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Figure 2.9: A 2-d illustration to explain the plane parameter α and rays R from the
camera.

the normal vector α̂ = α
|α|

gives the orientation of the plane. If Ri is the unit vector

(also called the ray Ri) from the camera center to a point i lying on a plane with

parameters α, then di = 1/RT
i α is the distance of point i from the camera center.

2.9 Segment-wise features

In plane-parameter representation, our basic unit of representation is a superpixel (a

planar segment). Therefore, we compute features for a irregular segment Si (compared

to a rectangular patch in Section 2.4).

For each superpixel, we compute a battery of features to capture some of the

monocular cues discussed in Section 2.3. We also compute features to predict mean-

ingful boundaries in the images, such as occlusion and folds.

2.9.1 Monocular image features

To compute the segment-based features, we sum the filter outputs over the pixels in

superpixel Si as Ei(n) =
∑

(x,y)∈Si
|I ∗Fn|

k. (Note in point-wise representation we did

the summation over a uniform rectangular patch instead of a irregular superpixel.)

The shape of the segment gives information about depth as well. For example,

a big superpixel is more likely to be part of a wall vs a short irregular superpixel
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that is more likely to be a irregular object, such as part of a tree. Our superpixel

shape and location based features (14, computed only for the superpixel) included

the shape and location based features in Section 2.2 of [46], and also the eccentricity

of the superpixel. (See Fig. 2.15.)

We attempt to capture more “contextual” information by also including features

from neighboring superpixels (we pick the largest four in our experiments), and at

multiple spatial scales (three in our experiments). The features, therefore, contain

information from a larger portion of the image, and thus are more expressive than just

local features. This makes the feature vector xi of a superpixel 34∗(4+1)∗3+14 = 524

dimensional.

2.9.2 Features for boundaries

Another strong cue for 3D structure perception is boundary information. If two

neighboring superpixels of an image display different features, humans would often

perceive them to be parts of different objects; therefore an edge between two super-

pixels with distinctly different features, is a candidate for a occlusion boundary or a

fold. To compute the features ǫij between superpixels i and j, we first generate 14

different segmentations for each image for 2 different scales for 7 different properties

based on textures, color, and edges. We found that features based on multiple seg-

mentations are better for indicating boundaries. The groupings (segments) produced

by over-segmentation algorithm were empirically found to be better than comparing

histograms in Section 2.4.2. We modified [32] to create segmentations based on these

properties. Each element of our 14 dimensional feature vector ǫij is then an indicator

if two superpixels i and j lie in the same segmentation. For example, if two super-

pixels belong to the same segments in all the 14 segmentations then it is more likely

that they are coplanar or connected. Relying on multiple segmentation hypotheses

instead of one makes the detection of boundaries more robust. The features ǫij are

the input to the classifier for the occlusion boundaries and folds.
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Figure 2.10: (Left) Original image. (Right) Superpixels overlaid with an illustration
of the Markov Random Field (MRF). The MRF models the relations (shown by the
edges) between neighboring superpixels. (Only a subset of nodes and edges shown.)

2.10 Probabilistic model

It is difficult to infer 3D information of a region from local cues alone (see Section 2.3),

and one needs to infer the 3D information of a region in relation to the 3D information

of other regions.

In our MRF model, we try to capture the following properties of the images:

• Image Features and depth: The image features of a superpixel bear some

relation to the depth (and orientation) of the superpixel.

• Connected structure: Except in case of occlusion, neighboring superpixels

are more likely to be connected to each other.

• Co-planar structure: Neighboring superpixels are more likely to belong to

the same plane, if they have similar features and if there are no edges between

them.

• Co-linearity: Long straight lines in the image plane are more likely to be
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straight lines in the 3D model. For example, edges of buildings, sidewalk, win-

dows.

Note that no single one of these four properties is enough, by itself, to predict the

3D structure. For example, in some cases, local image features are not strong indica-

tors of the depth (and orientation) (e.g., a patch on a blank feature-less wall). Thus,

our approach will combine these properties in an MRF, in a way that depends on our

“confidence” in each of these properties. Here, the “confidence” is itself estimated

from local image cues, and will vary from region to region in the image.

Our MRF is composed of five types of nodes. The input to the MRF occurs

through two variables, labeled x and ǫ. These variables correspond to features com-

puted from the image pixels (see Section 2.9 for details.) and are always observed;

thus the MRF is conditioned on these variables. The variables ν indicate our degree of

confidence in a depth estimate obtained only from local image features. The variables

y indicate the presence or absence of occlusion boundaries and folds in the image.

These variables are used to selectively enforce coplanarity and connectivity between

superpixels. Finally, the variables α are the plane parameters that are inferred using

the MRF, which we call “Plane Parameter MRF.”14

Occlusion Boundaries and Folds: We use the variables yij ∈ {0, 1} to indicate

whether an “edgel” (the edge between two neighboring superpixels) is an occlusion

boundary/fold or not. The inference of these boundaries is typically not completely

accurate; therefore we will infer soft values for yij. (See Fig. 2.11.) More formally,

for an edgel between two superpixels i and j, yij = 0 indicates an occlusion bound-

ary/fold, and yij = 1 indicates none (i.e., a planar surface).

In many cases, strong image gradients do not correspond to the occlusion bound-

ary/fold, e.g., a shadow of a building falling on a ground surface may create an edge

between the part with a shadow and the one without. An edge detector that relies

just on these local image gradients would mistakenly produce an edge. However, there

are other visual cues beyond local image gradients that better indicate whether two

planes are connected/coplanar or not. Using learning to combine a number of such

14For comparison, we also present an MRF that only models the 3D location of the points in the
image (“Point-wise MRF,” see Appendix).
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Figure 2.11: (Left) An image of a scene. (Right) Inferred “soft” values of yij ∈ [0, 1].
(yij = 0 indicates an occlusion boundary/fold, and is shown in black.) Note that even
with the inferred yij being not completely accurate, the plane parameter MRF will
be able to infer “correct” 3D models.

visual features makes the inference more accurate. In [84], Martin, Fowlkes and Malik

used local brightness, color and texture for learning segmentation boundaries. Here,

our goal is to learn occlusion boundaries and folds. In detail, we model yij using a

logistic response as P (yij = 1|ǫij;ψ) = 1/(1 + exp(−ψT ǫij)). where, ǫij are features

of the superpixels i and j (Section 2.9.2), and ψ are the parameters of the model.

During inference, we will use a mean field-like approximation, where we replace yij

with its mean value under the logistic model.

Now, we will describe how we model the distribution of the plane parameters α,

conditioned on y.

Fractional depth error: For 3D reconstruction, the fractional (or relative) error in

depths is most meaningful; it is used in structure for motion, stereo reconstruction,

etc. [65, 155] For ground-truth depth d, and estimated depth d̂, fractional error is

defined as (d̂ − d)/d = d̂/d − 1. Therefore, we will be penalizing fractional errors in

our MRF.

MRF Model: To capture the relation between the plane parameters and the image

features, and other properties such as co-planarity, connectedness and co-linearity, we
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formulate our MRF as

P (α|X, ν, y, R; θ) =
1

Z

∏

i

f1(αi|Xi, νi, Ri; θ)

∏

i,j

f2(αi, αj|yij, Ri, Rj) (2.3)

where, αi is the plane parameter of the superpixel i. For a total of Si points in

the superpixel i, we use xi,si
to denote the features for point si in the superpixel i.

Xi = {xi,si
∈ R

524 : si = 1, ..., Si} are the features for the superpixel i. (Section 2.9.1)

Similarly, Ri = {Ri,si
: si = 1, ..., Si} is the set of rays for superpixel i.15 ν is the

“confidence” in how good the (local) image features are in predicting depth (more

details later).

Figure 2.12: Illustration explaining effect of the choice of si and sj on enforcing (a)
Connected structure and (b) Co-planarity.

The first term f1(·) models the plane parameters as a function of the image features

xi,si
. We have RT

i,si
αi = 1/di,si

(where Ri,si
is the ray that connects the camera to the

3D location of point si), and if the estimated depth d̂i,si
= xT

i,si
θr, then the fractional

15The rays are obtained by making a reasonable guess on the camera intrinsic parameters—that
the image center is the origin and the pixel-aspect-ratio is one—unless known otherwise from the
image headers.
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error would be

d̂i,si
− di,si

di,si

=
1

di,si

(d̂i,si
) − 1 = RT

i,si
αi(x

T
i,si
θr) − 1

Therefore, to minimize the aggregate fractional error over all the points in the super-

pixel, we model the relation between the plane parameters and the image features

as

f1(αi|Xi, νi, Ri; θ) = exp

(

−

Si
∑

si=1

νi,si

∣

∣RT
i,si
αi(x

T
i,si
θr) − 1

∣

∣

)

(2.4)

The parameters of this model are θr ∈ R
524. We use different parameters (θr) for

rows r = 1, ..., 11 in the image, because the images we consider are roughly aligned

upwards (i.e., the direction of gravity is roughly downwards in the image), and thus

it allows our algorithm to learn some regularities in the images—that different rows

of the image have different statistical properties. E.g., a blue superpixel might be

more likely to be sky if it is in the upper part of image, or water if it is in the lower

part of the image, or that in the images of environments available on the internet, the

horizon is more likely to be in the middle one-third of the image. (In our experiments,

we obtained very similar results using a number of rows ranging from 5 to 55.) Here,

νi = {νi,si
: si = 1, ..., Si} indicates the confidence of the features in predicting the

depth d̂i,si
at point si.

16 If the local image features were not strong enough to predict

depth for point si, then νi,si
= 0 turns off the effect of the term

∣

∣RT
i,si
αi(x

T
i,si
θr) − 1

∣

∣.

The second term f2(·) models the relation between the plane parameters of two

superpixels i and j. It uses pairs of points si and sj to do so:

f2(·) =
∏

{si,sj}∈N hsi,sj
(·) (2.5)

We will capture co-planarity, connectedness and co-linearity, by different choices of

h(·) and {si, sj}.

16The variable νi,si
is an indicator of how good the image features are in predicting depth for point

si in superpixel i. We learn νi,si
from the monocular image features, by estimating the expected

value of |di − xT
i θr|/di as φT

r xi with logistic response, with φr as the parameters of the model,
features xi and di as ground-truth depths.
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Figure 2.13: A 2-d illustration to explain the co-planarity term. The distance of the
point sj on superpixel j to the plane on which superpixel i lies along the ray Rj,sj” is
given by d1 − d2.

Connected structure: We enforce this constraint by choosing si and sj to be on

the boundary of the superpixels i and j. As shown in Fig. 2.12a, penalizing the

distance between two such points ensures that they remain fully connected. The

relative (fractional) distance between points si and sj is penalized by

hsi,sj
(αi, αj, yij, Ri, Rj) = exp

(

−yij|(R
T
i,si
αi −RT

j,sj
αj)d̂|

)

(2.6)

In detail, RT
i,si
αi = 1/di,si

and RT
j,sj
αj = 1/dj,sj

; therefore, the term (RT
i,si
αi−R

T
j,sj
αj)d̂

gives the fractional distance |(di,si
− dj,sj

)/
√

di,si
dj,sj

| for d̂ =
√

d̂si
d̂sj

. Note that in

case of occlusion, the variables yij = 0, and hence the two superpixels will not be

forced to be connected.

Co-planarity: We enforce the co-planar structure by choosing a third pair of points

s′′i and s′′j in the center of each superpixel along with ones on the boundary. (Fig. 2.12b)

To enforce co-planarity, we penalize the relative (fractional) distance of point s′′j from
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(a) 2-d image (b) 3D world, top view

Figure 2.14: Co-linearity. (a) Two superpixels i and j lying on a straight line in the
2-d image, (b) An illustration showing that a long straight line in the image plane is
more likely to be a straight line in 3D.

the plane in which superpixel i lies, along the ray Rj,s′′j
(See Fig. 2.13).

hs
′′

j
(αi, αj, yij, Rj,s′′j

) = exp
(

−yij|(R
T
j,s′′j
αi −RT

j,s′′j
αj)d̂s′′j

|
)

(2.7)

with hs′′i ,s′′j
(·) = hs′′i

(·)hs′′j
(·). Note that if the two superpixels are coplanar, then

hs′′i ,s′′j
= 1. To enforce co-planarity between two distant planes that are not connected,

we can choose three such points and use the above penalty.

Co-linearity: Consider two superpixels i and j lying on a long straight line in a 2-d

image (Fig. 2.14a). There are an infinite number of curves that would project to a

straight line in the image plane; however, a straight line in the image plane is more

likely to be a straight one in 3D as well (Fig. 2.14b). In our model, therefore, we

will penalize the relative (fractional) distance of a point (such as sj) from the ideal

straight line.

In detail, consider two superpixels i and j that lie on planes parameterized by αi

and αj respectively in 3D, and that lie on a straight line in the 2-d image. For a point

sj lying on superpixel j, we will penalize its (fractional) distance along the ray Rj,sj
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from the 3D straight line passing through superpixel i. I.e.,

hsj
(αi, αj, yij, Rj,sj

) = exp
(

−yij|(R
T
j,sj
αi −RT

j,sj
αj)d̂|

)

(2.8)

with hsi,sj
(·) = hsi

(·)hsj
(·). In detail, RT

j,sj
αj = 1/dj,sj

and RT
j,sj
αi = 1/d′j,sj

; therefore,

the term (RT
j,sj
αi − RT

j,sj
αj)d̂ gives the fractional distance

∣

∣

∣(dj,sj
− d′j,sj

)/
√

dj,sj
d′j,sj

∣

∣

∣

for d̂ =
√

d̂j,sj
d̂′j,sj

. The “confidence” yij depends on the length of the line and its

curvature—a long straight line in 2-d is more likely to be a straight line in 3D.

2.10.1 Parameter learning

Exact parameter learning based on conditional likelihood for the Laplacian models is

intractable, therefore, we use Multi-Conditional Learning (MCL) [15, 87] to divide the

learning problem into smaller learning problems for each of the individual densities.

MCL is a framework for optimizing graphical models based on a product of several

marginal conditional likelihoods each relying on common sets of parameters from an

underlying joint model and predicting different subsets of variables conditioned on

other subsets.

In detail, we will first focus on learning θr given the ground-truth depths d (ob-

tained from our 3D laser scanner, see Section 2.11) and the value of yij and νi,si
. For

this, we maximize the conditional pseudo log-likelihood logP (α|X, ν, y, R; θr) as

θ∗r = arg max
θr

∑

i

log f1(αi|Xi, νi, Ri; θr)

+
∑

i,j

log f2(αi, αj|yij, Ri, Rj)

Now, from Eq. 2.3 note that f2(·) does not depend on θr; therefore the learning prob-

lem simplifies to minimizing the L1 norm, i.e., θ∗r = arg minθr

∑

i

∑Si

si=1 νi,si

∣

∣

∣

1
di,si

(xT
i,si
θr) − 1

∣

∣

∣
.

This is efficiently solved using a Linear Program (LP).

In the next step, we learn the parameters φ of the logistic regression model for

estimating ν in footnote 16. Parameters of a logistic regression model can be esti-

mated by maximizing the conditional log-likelihood. [8] Now, the parameters ψ of
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the logistic regression model P (yij|ǫij;ψ) for occlusion boundaries and folds are sim-

ilarly estimated using the hand-labeled ground-truth ground-truth training data by

maximizing its conditional log-likelihood.

2.10.2 MAP inference

MAP inference of the plane parameters α, i.e., maximizing the conditional likelihood

P (α|X, ν, y, R; θ), is efficiently performed by solving a LP. We implemented an effi-

cient method that uses the sparsity in our problem, so that inference can be performed

in about 4-5 seconds for an image having about 2000 superpixels on a single-core Intel

3.40GHz CPU with 2 GB RAM.

Details: When given a new test-set image, we find the MAP estimate of the plane pa-

rameters α by maximizing the conditional log-likelihood logP (α|X, ν, Y,R; θ). Note

that we solve for α as a continuous variable optimization problem, which is unlike

many other techniques where discrete optimization is more popular, e.g., [155]. From

Eq. 2.3, we have

α∗ = arg max
α

logP (α|X, ν, y, R; θr)

= arg max
α

log
1

Z

∏

i

f1(αi|Xi, νi, Ri; θr)
∏

i,j

f2(αi, αj|yij, Ri, Rj)

Note that the partition function Z does not depend on α. Therefore, from Eq. 2.4, 2.6

and 2.7 and for d̂ = xT θr, we have

= arg minα

∑K
i=1

(

∑Si

si=1 νi,si

∣

∣

∣(RT
i,si
αi)d̂i,si

− 1
∣

∣

∣

+
∑

j∈N(i)

∑

si,sj∈Bij

yij

∣

∣

∣(RT
i,si
αi −RT

j,sj
αj)d̂si,sj

∣

∣

∣

+
∑

j∈N(i)

∑

sj∈Cj

yij

∣

∣

∣(RT
j,sj
αi −RT

j,sj
αj)d̂sj

∣

∣

∣

)

where K is the number of superpixels in each image; N(i) is the set of “neighboring”

superpixels—one whose relations are modeled—of superpixel i; Bij is the set of pair of
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points on the boundary of superpixel i and j that model connectivity; Cj is the center

point of superpixel j that model co-linearity and co-planarity; and d̂si,sj
=
√

d̂si
d̂sj

.

Note that each of terms is a L1 norm of a linear function of α; therefore, this is a L1

norm minimization problem, [13, chap. 6.1.1] and can be compactly written as

arg minx ‖Ax− b‖1 + ‖Bx‖1 + ‖Cx‖1

where x ∈ R
3K×1 is a column vector formed by rearranging the three x-y-z components

of αi ∈ R
3 as x3i−2 = αix, x3i−1 = αiy and x3i = αiz; A is a block diagonal matrix

such that A

[

(
∑i−1

l=1 Sl) + si, (3i− 2) : 3i

]

= RT
i,si
d̂i,si

νi,si
and b1 ∈ R

3K×1 is a column

vector formed from νi,si
. B and C are all block diagonal matrices composed of rays R,

d̂ and y; they represent the cross terms modeling the connected structure, co-planarity

and co-linearity properties.

In general, finding the global optimum in a loopy MRF is difficult. However

in our case, the minimization problem is an Linear Program (LP), and therefore

can be solved exactly using any linear programming solver. (In fact, any greedy

method including a loopy belief propagation would reach the global minima.) For

fast inference, we implemented our own optimization method, one that captures the

sparsity pattern in our problem, and by approximating the L1 norm with a smooth

function:

‖x‖1
∼= Υβ(x) = 1

β

[

log (1 + exp(−βx)) + log (1 + exp(βx))
]

Note that ‖x‖1 = limβ→∞ ‖x‖β, and the approximation can be made arbitrarily close

by increasing β during steps of the optimization. Then we wrote a customized Newton

method based solver that computes the Hessian efficiently by utilizing the sparsity.

[13]
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(a) (b) (c)

(d) (e)

Figure 2.15: The feature vector. (a) The original image, (b) Superpixels for the
image, (c) An illustration showing the location of the neighbors of superpixel S3C
at multiple scales, (d) Actual neighboring superpixels of S3C at the finest scale, (e)
Features from each neighboring superpixel along with the superpixel-shape features
give a total of 524 features for the superpixel S3C. (Best viewed in color.)

2.11 Data collection

We used a 3D laser scanner to collect images and their corresponding depthmaps

(Fig. 2.17). The scanner uses a laser device (SICK LMS-291) which gives depth

readings in a vertical column, with a 1.0◦ resolution. To collect readings along the

other axis (left to right), the SICK laser was mounted on a panning motor. The motor

rotates after each vertical scan to collect laser readings for another vertical column,

with a 0.5◦ horizontal angular resolution. We reconstruct the depthmap using the

vertical laser scans, the motor readings and known relative position and pose of the



44 CHAPTER 2. SINGLE IMAGE DEPTH RECONSTRUCTION

(a) Image (b) Ground-Truth (c) Gaussian (d) Laplacian

Figure 2.16: Results for a varied set of environments, showing (a) original image, (b)
ground truth depthmap, (c) predicted depthmap by Gaussian model, (d) predicted
depthmap by Laplacian model. (Best viewed in color).
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laser device and the camera. We also collected data of stereo pairs with corresponding

depthmaps (Section 3.2), by mounting the laser range finding equipment on a LAGR

(Learning Applied to Ground Robotics) robot (Fig. 2.18). The LAGR vehicle is

equipped with sensors, an onboard computer, and Point Grey Research Bumblebee

stereo cameras, mounted with a baseline distance of 11.7cm. [146]

2.12 Experiments: depths

We collected a total of 425 image+depthmap pairs, with an image resolution of

1704x2272 and a depthmap resolution of 86x107. In the experimental results reported

here, 75% of the images/depthmaps were used for training, and the remaining 25%

for hold-out testing. The images comprise a wide variety of scenes including natural

environments (forests, trees, bushes, etc.), man-made environments (buildings, roads,

sidewalks, trees, grass, etc.), and purely indoor environments (corridors, etc.). Due

to limitations of the laser, the depthmaps had a maximum range of 81m (the maxi-

mum range of the laser scanner), and had minor additional errors due to reflections,

missing laser scans, and mobile objects. Prior to running our learning algorithms,

we transformed all the depths to a log scale so as to emphasize multiplicative rather

than additive errors in training. Data used in the experiments is available at:

http://ai.stanford.edu/∼asaxena/learningdepth/

We tested our model on real-world test-set images of forests (containing trees,

bushes, etc.), campus areas (buildings, people, and trees), and indoor scenes (such as

corridors).

Table 2.1 shows the test-set results with different feature combinations of scales,

summary statistics, and neighbors, on three classes of environments: forest, campus,

and indoor. The Baseline model is trained without any features, and predicts the

mean value of depth in the training depthmaps. We see that multiscale and column

features improve the algorithm’s performance. Including features from neighboring

patches, which help capture more global information, reduces the error from .162
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Figure 2.17: The 3D scanner used for collecting images and the corresponding
depthmaps.
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Figure 2.18: The custom built 3D scanner for collecting depthmaps with stereo image
pairs, mounted on the LAGR robot.
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Figure 2.19: (a) original image, (b) ground truth depthmap, (c) “prior” depthmap
(trained with no features), (d) features only (no MRF relations), (e) Full Laplacian
model. (Best viewed in color).

Table 2.1: Effect of multiscale and column features on accuracy. The average absolute
errors (RMS errors gave very similar trends) are on a log scale (base 10). H1 and
H2 represent summary statistics for k = 1, 2. S1, S2 and S3 represent the 3 scales.
C represents the column features. Baseline is trained with only the bias term (no
features).

Feature All Forest Campus Indoor

Baseline .295 .283 .343 .228
Gaussian (S1,S2,S3, H1,H2,no neighbors) .162 .159 .166 .165
Gaussian (S1, H1,H2) .171 .164 .189 .173
Gaussian (S1,S2, H1,H2) .155 .151 .164 .157
Gaussian (S1,S2,S3, H1,H2) .144 .144 .143 .144
Gaussian (S1,S2,S3, C, H1) .139 .140 .141 .122
Gaussian (S1,S2,S3, C, H1,H2) .133 .135 .132 .124
Laplacian .132 .133 .142 .084

orders of magnitude to .133 orders of magnitude.17 We also note that the Lapla-

cian model performs better than the Gaussian one, reducing error to .084 orders of

magnitude for indoor scenes, and .132 orders of magnitude when averaged over all

scenes. Empirically, the Laplacian model does indeed give depthmaps with signifi-

cantly sharper boundaries (as in our discussion in Section 2.5.2; also see Fig. 2.16).

Fig. 2.19 shows that modeling the spatial relationships in the depths is important.

Depths estimated without using the second term in the exponent of Eq. 2.2, i.e.,

depths predicted using only image features with row-sensitive parameters θr, are

17Errors are on a log10 scale. Thus, an error of ε means a multiplicative error of 10ε in actual
depth. E.g., 10.132 = 1.355, which thus represents an 35.5% multiplicative error.
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very noisy (Fig. 2.19d).18 Modeling the relations between the neighboring depths at

multiple scales through the second term in the exponent of Eq. 2.2 also gave better

depthmaps (Fig. 2.19e). Finally, Fig. 2.19c shows the model’s “prior” on depths;

the depthmap shown reflects our model’s use of image-row sensitive parameters. In

our experiments, we also found that many features/cues were given large weights;

therefore, a model trained with only a few cues (e.g., the top 50 chosen by a feature

selection method) was not able to predict reasonable depths.

Our algorithm works well in a varied set of environments, as shown in Fig. 2.16

(last column). A number of vision algorithms based on “ground finding” (e.g., [36])

appear to perform poorly when there are discontinuities or significant luminance

variations caused by shadows, or when there are significant changes in the ground

texture. In contrast, our algorithm appears to be robust to luminance variations,

such as shadows (Fig. 2.16, 4th row) and camera exposure (Fig. 2.16, 2nd and 5th

rows).

Some of the errors of the algorithm can be attributed to errors or limitations of

the training set. For example, the maximum value of the depths in the training and

test set is 81m; therefore, far-away objects are all mapped to the distance of 81m.

Further, laser readings are often incorrect for reflective/transparent objects such as

glass; therefore, our algorithm also often estimates depths of such objects incorrectly.

Quantitatively, our algorithm appears to incur the largest errors on images which

contain very irregular trees, in which most of the 3D structure in the image is domi-

nated by the shapes of the leaves and branches. However, arguably even human-level

performance would be poor on these images.

We note that monocular cues rely on prior knowledge, learned from the train-

ing set, about the environment. This is because monocular 3D reconstruction is an

inherently ambiguous problem. Thus, the monocular cues may not generalize well

to images very different from ones in the training set, such as underwater images or

aerial photos.

To test the generalization capability of the algorithm, we also estimated depthmaps

of images downloaded from the Internet (images for which camera parameters are not

18This algorithm gave an overall error of .181, compared to our full model’s error of .132.
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Figure 2.20: Typical examples of the predicted depths for images downloaded from
the internet. (Best viewed in color.)
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known).19 The model (using monocular cues only) was able to produce reasonable

depthmaps on most of the images (Fig. 2.20). Informally, our algorithm appears to

predict the relative depths quite well (i.e., their relative distances to the camera);20

even for scenes very different from the training set, such as a sunflower field, an oil-

painting scene, mountains and lakes, a city skyline photographed from sea, a city

during snowfall, etc.

2.13 Experiments: visual

We collected a total of 534 images+depths, with an image resolution of 2272x1704

and depths with resolution of 55x305. These images were collected during daytime in

a diverse set of urban and natural areas in the city of Palo Alto and its surrounding

regions.

(a) (b) (c) (d) (e)

Figure 2.21: (a) Original Image, (b) Ground truth depths, (c) Depth from image
features only, (d) Point-wise MRF, (e) Plane parameter MRF. (Best viewed in color.)

We tested our model on rest of the 134 images (collected using our 3D scanner),

19Since we do not have ground-truth depthmaps for images downloaded from the Internet, we are
unable to give a quantitative comparisons on these images. Further, in the extreme case of orthogonal
cameras or very wide angle perspective cameras, our algorithm would need to be modified to take
into account the field of view of the camera.

20For most applications such as object recognition using knowledge of depths, robotic navigation,
or 3D reconstruction, relative depths are sufficient. The depths could be rescaled to give accurate
absolute depths, if the camera parameters are known or are estimated.
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Figure 2.22: Typical depths predicted by our plane parameterized algorithm on hold-
out test set, collected using the laser-scanner. (Best viewed in color.)

Figure 2.23: Typical results from our algorithm. (Top row) Original images, (Bottom
row) depths (shown in log scale, yellow is closest, followed by red and then blue)
generated from the images using our plane parameter MRF. (Best viewed in color.)
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Table 2.2: Results: Quantitative comparison of various methods.

Method correct % planes log10 Rel
(%) correct

SCN NA NA 0.198 0.530
HEH 33.1% 50.3% 0.320 1.423

Baseline-1 0% NA 0.300 0.698
No priors 0% NA 0.170 0.447
Point-wise mrf 23% NA 0.149 0.458

Baseline-2 0% 0% 0.334 0.516
No priors 0% 0% 0.205 0.392
Co-planar 45.7% 57.1% 0.191 0.373
PP-MRF 64.9% 71.2% 0.187 0.370

and also on 588 internet images. The internet images were collected by issuing key-

words on Google image search. To collect data and to perform the evaluation of

the algorithms in a completely unbiased manner, a person not associated with the

project was asked to collect images of environments (greater than 800x600 size). The

person chose the following keywords to collect the images: campus, garden, park,

house, building, college, university, church, castle, court, square, lake, temple, scene.

The images thus collected were from places from all over the world, and contained

environments that were significantly different from the training set, e.g. hills, lakes,

night scenes, etc. The person chose only those images which were of “environments,”

i.e. she removed images of the geometrical figure ‘square’ when searching for keyword

‘square’; no other pre-filtering was done on the data.

In addition, we manually labeled 50 images with ‘ground-truth’ boundaries to

learn the parameters for occlusion boundaries and folds.

We performed an extensive evaluation of our algorithm on 588 internet test images,

and 134 test images collected using the laser scanner.

In Table 2.2, we compare the following algorithms:

(a) Baseline: Both for pointwise MRF (Baseline-1) and plane parameter MRF (Baseline-

2). The Baseline MRF is trained without any image features, and thus reflects “prior”

depths of sorts.
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Figure 2.24: Typical results from HEH and our algorithm. Row 1: Original Image.
Row 2: 3D model generated by HEH, Row 3 and 4: 3D model generated by our
algorithm. (Note that the screenshots cannot be simply obtained from the original
image by an affine transformation.) In image 1, HEH makes mistakes in some parts
of the foreground rock, while our algorithm predicts the correct model; with the rock
occluding the house, giving a novel view. In image 2, HEH algorithm detects a wrong
ground-vertical boundary; while our algorithm not only finds the correct ground, but
also captures a lot of non-vertical structure, such as the blue slide. In image 3, HEH
is confused by the reflection; while our algorithm produces a correct 3D model. In
image 4, HEH and our algorithm produce roughly equivalent results—HEH is a bit
more visually pleasing and our model is a bit more detailed. In image 5, both HEH
and our algorithm fail; HEH just predict one vertical plane at a incorrect location.
Our algorithm predicts correct depths of the pole and the horse, but is unable to
detect their boundary; hence making it qualitatively incorrect.



2.13. EXPERIMENTS: VISUAL 55

(b) Our Point-wise MRF (described in [152]): with and without constraints (connec-

tivity, co-planar and co-linearity).

(c) Our Plane Parameter MRF (PP-MRF): without any constraint, with co-planar

constraint only, and the full model.

(d) Saxena et al. (SCN), [134, 135] applicable for quantitative errors only.

(e) Hoiem et al. (HEH) [46]. For fairness, we scale and shift their depths before com-

puting the errors to match the global scale of our test images. Without the scaling

and shifting, their error is much higher (7.533 for relative depth error).

We compare the algorithms on the following metrics:

(a) % of models qualitatively correct,

(b) % of major planes correctly identified,21

(c) Depth error | log d−log d̂| on a log-10 scale, averaged over all pixels in the hold-out

test set,

(d) Average relative depth error |d−d̂|
d

. (We give these two numerical errors on only the

134 test images that we collected, because ground-truth laser depths are not available

for internet images.)

Table 2.2 shows that both of our models (Point-wise MRF and Plane Parameter

MRF) outperform the other algorithms in quantitative accuracy in depth prediction.

Plane Parameter MRF gives better relative depth accuracy and produces sharper

depth discontinuities (Fig. 2.21, 2.22 and 2.23). Table 2.2 also shows that by cap-

turing the image properties of connected structure, co-planarity and co-linearity, the

models produced by the algorithm become significantly better. In addition to reduc-

ing quantitative errors, PP-MRF does indeed produce significantly better 3D models.

When producing 3D flythroughs, even a small number of erroneous planes make the

3D model visually unacceptable, even though the quantitative numbers may still show

small errors.

Our algorithm gives qualitatively correct models for 64.9% of images as compared

21For the first two metrics, we define a model as correct when for 70% of the major planes in the
image (major planes occupy more than 15% of the area), the plane is in correct relationship with
its nearest neighbors (i.e., the relative orientation of the planes is within 30 degrees). Note that
changing the numbers, such as 70% to 50% or 90%, 15% to 10% or 30%, and 30 degrees to 20 or 45
degrees, gave similar trends in the results.
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Figure 2.25: Typical results from our algorithm. Original image (top), and a screen-
shot of the 3D flythrough generated from the image (bottom of the image). 16 images
(a-g,l-t) were evaluated as “correct” and 4 (h-k) were evaluated as “incorrect.”
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Table 2.3: Percentage of images for which HEH is better, our PP-MRF is better, or
it is a tie.

Algorithm %better

Tie 15.8%
HEH 22.1%
PP-MRF 62.1%

to 33.1% by HEH. The qualitative evaluation was performed by a person not as-

sociated with the project following the guidelines in Footnote 21. Delage, Lee and

Ng [26] and HEH generate a popup effect by folding the images at “ground-vertical”

boundaries—an assumption which is not true for a significant number of images;

therefore, their method fails in those images. Some typical examples of the 3D mod-

els are shown in Fig. 2.24. (Note that all the test cases shown in Fig. 5.1, 2.23, 2.24

and 2.25 are from the dataset downloaded from the internet, except Fig. 2.25a which

is from the laser-test dataset.) These examples also show that our models are often

more detailed, in that they are often able to model the scene with a multitude (over

a hundred) of planes.

We performed a further comparison. Even when both algorithms are evaluated

as qualitatively correct on an image, one result could still be superior. Therefore, we

asked the person to compare the two methods, and decide which one is better, or is

a tie.22 Table 2.3 shows that our algorithm outputs the better model in 62.1% of the

cases, while HEH outputs better model in 22.1% cases (tied in the rest).

Full documentation describing the details of the unbiased human judgment pro-

cess, along with the 3D flythroughs produced by our algorithm, is available online

at:

http://make3d.stanford.edu/research

22To compare the algorithms, the person was asked to count the number of errors made by each
algorithm. We define an error when a major plane in the image (occupying more than 15% area in
the image) is in wrong location with respect to its neighbors, or if the orientation of the plane is
more than 30 degrees wrong. For example, if HEH fold the image at incorrect place (see Fig. 2.24,
image 2), then it is counted as an error. Similarly, if we predict top of a building as far and the
bottom part of building near, making the building tilted—it would count as an error.
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Some of our models, e.g. in Fig. 2.25j, have cosmetic defects—e.g. stretched tex-

ture; better texture rendering techniques would make the models more visually pleas-

ing. In some cases, a small mistake (e.g., one person being detected as far-away in

Fig. 2.25h, and the banner being bent in Fig. 2.25k) makes the model look bad, and

hence be evaluated as “incorrect.”

2.14 Large-scale web experiment

Finally, in a large-scale web experiment, we allowed users to upload their photos on

the internet, and view a 3D flythrough produced from their image by our algorithm.

About 23846 unique users uploaded (and rated) about 26228 images.23 Users rated

48.1% of the models as good. If we consider the images of scenes only, i.e., exclude

images such as company logos, cartoon characters, closeups of objects, etc., then this

percentage was 57.3%. We have made the following website available for downloading

datasets/code, and for converting an image to a 3D model/flythrough:

http://make3d.stanford.edu

Our algorithm, trained on images taken in daylight around the city of Palo

Alto, was able to predict qualitatively correct 3D models for a large variety of

environments—for example, ones that have hills or lakes, ones taken at night, and

even paintings. (See Fig. 2.25 and the website.) We believe, based on our experiments

with varying the number of training examples (not reported here), that having a larger

and more diverse set of training images would improve the algorithm significantly.

2.15 Incorporating object information

In this section, we will demonstrate how our model can also incorporate other infor-

mation that might be available, for example, from object recognizers. In prior work,

Sudderth et al. [168] showed that knowledge of objects could be used to get crude

23No restrictions were placed on the type of images that users can upload. Users can rate the
models as good (thumbs-up) or bad (thumbs-down).
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Figure 2.26: (Left) Original Images, (Middle) Snapshot of the 3D model without using
object information, (Right) Snapshot of the 3D model that uses object information.
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depth estimates, and Hoiem et al. [45] used knowledge of objects and their location

to improve the estimate of the horizon. In addition to estimating the horizon, the

knowledge of objects and their location in the scene give strong cues regarding the

3D structure of the scene. For example, that a person is more likely to be on top of

the ground, rather than under it, places certain restrictions on the 3D models that

could be valid for a given image.

Here we give some examples of such cues that arise when information about objects

is available, and describe how we can encode them in our MRF:

(a) “Object A is on top of object B”

This constraint could be encoded by restricting the points si ∈ R
3 on object A to

be on top of the points sj ∈ R
3 on object B, i.e., sT

i ẑ ≥ sT
j ẑ (if ẑ denotes the

“up” vector). In practice, we actually use a probabilistic version of this constraint.

We represent this inequality in plane-parameter space (si = Ridi = Ri/(α
T
i Ri)). To

penalize the fractional error ξ =
(

RT
i ẑR

T
j αj −RT

j ẑRiαi

)

d̂ (the constraint corresponds

to ξ ≥ 0), we choose an MRF potential hsi,sj
(.) = exp (−yij (ξ + |ξ|)), where yij

represents the uncertainty in the object recognizer output. Note that for yij → ∞

(corresponding to certainty in the object recognizer), this becomes a “hard” constraint

RT
i ẑ/(α

T
i Ri) ≥ RT

j ẑ/(α
T
j Rj).

In fact, we can also encode other similar spatial-relations by choosing the vector

ẑ appropriately. For example, a constraint “Object A is in front of Object B” can be

encoded by choosing ẑ to be the ray from the camera to the object.

(b) “Object A is attached to Object B”

For example, if the ground-plane is known from a recognizer, then many objects would

be more likely to be “attached” to the ground plane. We easily encode this by using

our connected-structure constraint.

(c) Known plane orientation

If orientation of a plane is roughly known, e.g. that a person is more likely to be

“vertical”, then it can be easily encoded by adding to Eq. 2.3 a term f(αi) =

exp
(

−wi|α
T
i ẑ|
)

; here, wi represents the confidence, and ẑ represents the up vector.

We implemented a recognizer (based on the features described in Section 5.3.3)

for ground-plane, and used the Dalal-Triggs Detector [22] to detect pedestrians. For
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these objects, we encoded the (a), (b) and (c) constraints described above. Fig. 2.26

shows that using the pedestrian and ground detector improves the accuracy of the 3D

model. Also note that using “soft” constraints in the MRF (Section 2.15), instead of

“hard” constraints, helps in estimating correct 3D models even if the object recognizer

makes a mistake.

In an extension of our work [43], we addressed the problem of jointly solving ob-

ject detection and depth reconstruction. We proposed learning a set of related models

in such that they both solve their own problem and help each other. We developed

a framework called Cascaded Classification Models (CCM), where repeated instan-

tiations of these classifiers are coupled by their input/output variables in a cascade

that improves performance at each level. Our method requires only a limited “black

box” interface with the models, allowing us to use very sophisticated, state-of-the-art

classifiers without having to look under the hood. We demonstrated the effectiveness

of our method on a large set of natural images by combining the subtasks of scene cat-

egorization, object detection, multiclass image segmentation, and 3d reconstruction.

See Fig. 2.27 for a few examples.

2.16 Discussion

The problem of depth perception is fundamental to computer vision, one that has

enjoyed the attention of many researchers and seen significant progress in the last

few decades. However, the vast majority of this work, such as stereopsis, has used

multiple image geometric cues to infer depth. In contrast, single-image cues offer

a largely orthogonal source of information, one that has heretofore been relatively

underexploited. Given that depth and shape perception appears to be an impor-

tant building block for many other applications, such as object recognition [176, 45],

grasping [136], navigation [88], image compositing [58], and video retrieval [31], we

believe that monocular depth perception has the potential to improve all of these

applications, particularly in settings where only a single image of a scene is available.

We presented an algorithm for inferring detailed 3D structure from a single still
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(a)

Figure 2.27: (top two rows) three cases where CCM improved results for all tasks.
In the first, for instance, the presence of grass allows the CCM to remove the boat
detections. The next four rows show four examples where detections are improved
and four examples where segmentations are improved. (Best viewed in color.)
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image. Compared to previous approaches, our algorithm creates detailed 3D models

which are both quantitatively more accurate and visually more pleasing. Our ap-

proach begins by over-segmenting the image into many small homogeneous regions

called “superpixels” and uses an MRF to infer the 3D position and orientation of each.

Other than assuming that the environment is made of a number of small planes, we

do not make any explicit assumptions about the structure of the scene, such as the

assumption by Delage et al. [26] and Hoiem et al. [46] that the scene comprises verti-

cal surfaces standing on a horizontal floor. This allows our model to generalize well,

even to scenes with significant non-vertical structure.



Chapter 3

Multi-view Geometry using

Monocular Vision

3.1 Introduction

A 3D model built from a single image will almost invariably be an incomplete model

of the scene, because many portions of the scene will be missing or occluded. In this

section, we will use both the monocular cues and multi-view triangulation cues to

create better and larger 3D models.

Given a sparse set of images of a scene, it is sometimes possible to construct a 3D

model using techniques such as structure from motion (SFM) [33, 117], which start

by taking two or more photographs, then find correspondences between the images,

and finally use triangulation to obtain 3D locations of the points. If the images are

taken from nearby cameras (i.e., if the baseline distance is small), then these methods

often suffer from large triangulation errors for points far-away from the camera.1 If,

conversely, one chooses images taken far apart, then often the change of viewpoint

causes the images to become very different, so that finding correspondences becomes

difficult, sometimes leading to spurious or missed correspondences. (Worse, the large

baseline also means that there may be little overlap between the images, so that

1I.e., the depth estimates will tend to be inaccurate for objects at large distances, because even
small errors in triangulation will result in large errors in depth.

64
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Figure 3.1: Two images taken from a stereo pair of cameras, and the depthmap
calculated by a stereo system.

few correspondences may even exist.) These difficulties make purely geometric 3D

reconstruction algorithms fail in many cases, specifically when given only a small set

of images.

However, when tens of thousands of pictures are available—for example, for frequently-

photographed tourist attractions such as national monuments—one can use the in-

formation present in many views to reliably discard images that have only few corre-

spondence matches. Doing so, one can use only a small subset of the images available

(∼15%), and still obtain a “3D point cloud” for points that were matched using

SFM. This approach has been very successfully applied to famous buildings such

as the Notre Dame; the computational cost of this algorithm was significant, and

required about a week on a cluster of computers [164].

In the specific case of estimating depth from two images taken from a pair of

stereo cameras, (Fig. 3.1) the depths are estimated by triangulation using the two

images. Over the past few decades, researchers have developed very good stereo

vision systems (see [155] for a review). Although these systems work well in many

environments, stereo vision is fundamentally limited by the baseline distance between

the two cameras. Specifically, their depth estimates tend to be inaccurate when the

distances considered are large (because even very small triangulation/angle estimation

errors translate to very large errors in distances). Further, stereo vision also tends to

fail for textureless regions of images where correspondences cannot be reliably found.

On the other hand, humans perceive depth by seamlessly combining monocular
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cues with stereo cues.2 We believe that monocular cues and (purely geometric) stereo

cues give largely orthogonal, and therefore complementary, types of information about

depth. Stereo cues are based on the difference between two images and do not depend

on the content of the image. Even if the images are entirely random, it would still

generate a pattern of disparities (e.g., random dot stereograms [9]). On the other

hand, depth estimates from monocular cues are entirely based on the evidence about

the environment presented in a single image. In this chapter, we investigate how

monocular cues can be integrated with any reasonable stereo system, to obtain better

depth estimates than the stereo system alone.

The reason that many geometric “triangulation-based” methods sometimes fail

(especially when only a few images of a scene are available) is that they do not make

use of the information present in a single image. Therefore, we will extend our MRF

model to seamlessly combine triangulation cues and monocular image cues to build

a full photo-realistic 3D model of the scene. Using monocular cues will also help us

build 3D model of the parts that are visible only in one view.

3.2 Improving stereo vision using monocular Cues

3.2.1 Disparity from stereo correspondence

Depth estimation using stereo vision from two images (taken from two cameras sep-

arated by a baseline distance) involves three steps: First, establish correspondences

between the two images. Then, calculate the relative displacements (called “dispar-

ity”) between the features in each image. Finally, determine the 3D depth of the

feature relative to the cameras, using knowledge of the camera geometry.

Stereo correspondences give reliable estimates of disparity, except when large por-

tions of the image are featureless (i.e., correspondences cannot be found). Further,

2Stereo cues: Each eye receives a slightly different view of the world and stereo vision combines
the two views to perceive 3D depth [180]. An object is projected onto different locations on the
two retinae (cameras in the case of a stereo system), depending on the distance of the object. The
retinal (stereo) disparity varies with object distance, and is inversely proportional to the distance of
the object. Disparity is typically not an effective cue for estimating small depth variations of objects
that are far away.
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for a given baseline distance between cameras, the accuracy decreases as the depth

values increase. In the limit of very distant objects, there is no observable disparity,

and depth estimation generally fails. Empirically, depth estimates from stereo tend

to become unreliable when the depth exceeds a certain distance.

Our stereo system finds good feature correspondences between the two images by

rejecting pixels with little texture, or where the correspondence is otherwise ambigu-

ous. More formally, we reject any feature where the best match is not significantly

better than all other matches within the search window. We use the sum-of-absolute-

differences correlation as the metric score to find correspondences [33]. Our cameras

(and algorithm) allow sub-pixel interpolation accuracy of 0.2 pixels of disparity. Even

though we use a fairly basic implementation of stereopsis, the ideas in this chapter

can just as readily be applied together with other, perhaps better, stereo systems.

3.2.2 Modeling uncertainty in Stereo

The errors in disparity are often modeled as either Gaussian [23] or via some other,

heavier-tailed distribution (e.g., [171]). Specifically, the errors in disparity have two

main causes: (a) Assuming unique/perfect correspondence, the disparity has a small

error due to image noise (including aliasing/pixelization), which is well modeled by a

Gaussian. (b) Occasional errors in correspondence cause larger errors, which results

in a heavy-tailed distribution for disparity [171].

If the standard deviation is σg in computing disparity g from stereo images

(because of image noise, etc.), then the standard deviation of the depths3 will be

σd,stereo ≈ σg/g. For our stereo system, we have that σg is about 0.2 pixels;4 this is

then used to estimate σd,stereo. Note therefore that σd,stereo is a function of the esti-

mated depth, and specifically, it captures the fact that variance in depth estimates is

larger for distant objects than for closer ones.

3Using the delta rule from statistics: Var(f(x)) ≈ (f ′(x))2Var(x), derived from a second order
Taylor series approximation of f(x). The depth d is related to disparity g as d = log(C/g), with
camera parameters determining C.

4One can also envisage obtaining a better estimate of σg as a function of a match metric used
during stereo correspondence [14], such as normalized sum of squared differences; or learning σg as
a function of disparity/texture based features.
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3.2.3 Probabilistic model

We use our Markov Random Field (MRF) model, which models relations between

depths at different points in the image, to incorporate both monocular and stereo

cues. Therefore, the depth of a particular patch depends on the monocular features

of the patch, on the stereo disparity, and is also related to the depths of other parts

of the image.

In our Gaussian and Laplacian MRFs (Eq. 3.1 and 3.2), we now have an additional

term di,stereo, which is the depth estimate obtained from disparity.5 This term models

the relation between the depth and the estimate from stereo disparity. The other

terms in the models are similar to Eq. 2.1 and 2.2 in Section 2.5.
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3.2.4 Results on stereo

For these experiments, we collected 257 stereo pairs+depthmaps in a wide-variety

of outdoor and indoor environments, with an image resolution of 1024x768 and a

depthmap resolution of 67x54. We used 75% of the images/depthmaps for training,

and the remaining 25% for hold-out testing.

5In this work, we directly use di,stereo as the stereo cue. In [136], we use a library of features
created from stereo depths as the cues for identifying a grasp point on objects.



3.2. IMPROVING STEREO VISION USING MONOCULAR CUES 69

(a) Image (b) Laser (c) Stereo (d) Mono (Lap) (e) Stereo+Mono

Figure 3.2: Results for a varied set of environments, showing one image of the stereo
pairs (column 1), ground truth depthmap collected from 3D laser scanner (column
2), depths calculated by stereo (column 3), depths predicted by using monocular cues
only (column 4), depths predicted by using both monocular and stereo cues (column
5). The bottom row shows the color scale for representation of depths. Closest points
are 1.2 m, and farthest are 81m. (Best viewed in color)
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Table 3.1: The average errors (RMS errors gave very similar trends) for various cues
and models, on a log scale (base 10).

Algorithm All Campus Forest Indoor

Baseline .341 .351 .344 .307
Stereo .138 .143 .113 .182
Stereo (smooth) .088 .091 .080 .099
Mono (Gaussian) .093 .095 .085 .108
Mono (Lap) .090 .091 .082 .105
Stereo+Mono .074 .077 .069 .079

(Lap)

We quantitatively compare the following classes of algorithms that use monocular

and stereo cues in different ways:

(i) Baseline: This model, trained without any features, predicts the mean value of

depth in the training depthmaps.

(ii) Stereo: Raw stereo depth estimates, with the missing values set to the mean

value of depth in the training depthmaps.

(iii) Stereo (smooth): This method performs interpolation and region filling; using

the Laplacian model without the second term in the exponent in Eq. 3.2, and also

without using monocular cues to estimate λ2 as a function of the image.

(iv) Mono (Gaussian): Depth estimates using only monocular cues, without the

first term in the exponent of the Gaussian model in Eq. 3.1.

(v) Mono (Lap): Depth estimates using only monocular cues, without the first term

in the exponent of the Laplacian model in Eq. 3.2.

(vi) Stereo+Mono: Depth estimates using the full model.

Table 3.1 shows that although the model is able to predict depths using monocular

cues only (“Mono”), the performance is significantly improved when we combine both

mono and stereo cues. The algorithm is able to estimate depths with an error of .074

orders of magnitude, (i.e., 18.6% of multiplicative error because 10.074 = 1.186) which

represents a significant improvement over stereo (smooth) performance of .088.

Fig. 3.2 shows that the model is able to predict depthmaps (column 5) in a variety

of environments. It also demonstrates how the model takes the best estimates from



3.2. IMPROVING STEREO VISION USING MONOCULAR CUES 71

1.4 2.2 3.5 5.7 9.2 14.9 24.1 38.91 62.9

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ground−truth distance (meters)

Er
ro

rs
 o

n 
a 

lo
g 

sc
al

e 
(b

as
e 

10
)

 

 

Stereo+Mono
Mono (Lap)
Stereo (smooth)

Figure 3.3: The average errors (on a log scale, base 10) as a function of the distance
from the camera.

both stereo and monocular cues to estimate more accurate depthmaps. For example,

in row 6 (Fig. 3.2), the depthmap generated by stereo (column 3) is very inaccurate;

however, the monocular-only model predicts depths fairly accurately (column 4).

The combined model uses both sets of cues to produce a better depthmap (column

5). In row 3, stereo cues give a better estimate than monocular ones. We again see

that our combined MRF model, which uses both monocular and stereo cues, gives

an accurate depthmap (column 5) correcting some mistakes of stereo, such as some

far-away regions that stereo predicted as close.

In Fig. 3.3, we study the behavior of the algorithm as a function of the 3D distance

from the camera. At small distances, the algorithm relies more on stereo cues, which

are more accurate than the monocular cues in this regime. However, at larger dis-

tances, the performance of stereo degrades, and the algorithm relies more on monoc-

ular cues. Since our algorithm models uncertainties in both stereo and monocular

cues, it is able to combine stereo and monocular cues effectively.

We note that monocular cues rely on prior knowledge, learned from the train-

ing set, about the environment. This is because monocular 3D reconstruction is an



72 CHAPTER 3. MULTI-VIEW GEOMETRY USING MONOCULAR VISION

inherently ambiguous problem. Thus, the monocular cues may not generalize well

to images very different from ones in the training set, such as underwater images or

aerial photos. In contrast, the stereopsis cues we used are are purely geometric, and

therefore should work well even on images taken from very different environments.

For example, the monocular algorithm fails sometimes to predict correct depths for

objects which are only partially visible in the image (e.g., Fig. 3.2, row 2: tree on the

left). For a point lying on such an object, most of the point’s neighbors lie outside the

image; hence the relations between neighboring depths are less effective here than for

objects lying in the middle of an image. However, in many of these cases, the stereo

cues still allow an accurate depthmap to be estimated (row 2, column 5).

3.3 Larger 3D models from multiple images

In the previous section, we showed that combining monocular cues and triangulation

cues gives better depth estimates. However, the method was applicable to stereo pairs

that are calibrated and placed closely together.

Now, we consider creating 3D models from multiple views (which are not necessar-

ily from a calibrated stereo pair) to create a larger 3D model. This problem is harder

because the cameras could be farther apart, and many portions could be visible from

one camera only.

One of other goals is to create 3D models that are quantitatively correct as well

as visually pleasing. We will use plane parameter representation for this purpose.

3.3.1 Representation

Given two small plane (superpixel) segmentations of two images, there is no guarantee

that the two segmentations are “consistent,” in the sense of the small planes (on a

specific object) in one image having a one-to-one correspondence to the planes in the

second image of the same object. Thus, at first blush it appears non-trivial to build a

3D model using these segmentations, since it is impossible to associate the planes in

one image to those in another. We address this problem by using our MRF to reason



3.3. LARGER 3D MODELS FROM MULTIPLE IMAGES 73

Figure 3.4: An illustration of the Markov Random Field (MRF) for inferring 3D
structure. (Only a subset of edges and scales shown.)

simultaneously about the position and orientation of every plane in every image. If

two planes lie on the same object, then the MRF will (hopefully) infer that they have

exactly the same 3D position. More formally, in our model, the plane parameters

αn
i of each small ith plane in the nth image are represented by a node in our Markov

Random Field (MRF). Because our model uses L1 penalty terms, our algorithm will

be able to infer models for which αn
i = αm

j , which results in the two planes exactly

overlapping each other.

3.3.2 Probabilistic model

In addition to the image features/depth, co-planarity, connected structure, and co-

linearity properties, we will also consider the depths obtained from triangulation

(SFM)—the depth of the point is more likely to be close to the triangulated depth.

Similar to the probabilistic model for 3D model from a single image, most of these

cues are noisy indicators of depth; therefore our MRF model will also reason about

our “confidence” in each of them, using latent variables yT (Section 3.3.3).

Let Qn = [Rotation, Translation] ∈ R
3×4 (technically SE(3)) be the camera pose

when image n was taken (w.r.t. a fixed reference, such as the camera pose of the first

image), and let dT be the depths obtained by triangulation (see Section 3.3.3). We
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formulate our MRF as

P (α|X,Y, dT ; θ) ∝
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n
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where, the superscript n is an index over the images, For an image n, αn
i is the plane

parameter of superpixel i in image n. Sometimes, we will drop the superscript for

brevity, and write α in place of αn when it is clear that we are referring to a particular

image.

The first term f1(·) and the second term f2(·) capture the monocular properties,

and are same as in Eq. 2.3. We use f3(·) to model the errors in the triangulated depths,

and penalize the (fractional) error in the triangulated depths dT i and di = 1/(RT
i αi).

For Kn points for which the triangulated depths are available, we therefore have
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This term places a “soft” constraint on a point in the plane to have its depth

equal to its triangulated depth.

MAP Inference: For MAP inference of the plane parameters, we need to maximize

the conditional log-likelihood logP (α|X,Y, dT ; θ). All the terms in Eq. 3.3 are L1

norm of a linear function of α; therefore MAP inference is efficiently solved using a

Linear Program (LP).

3.3.3 Triangulation matches

In this section, we will describe how we obtained the correspondences across images,

the triangulated depths dT and the “confidences” yT in the f3(·) term in Section 3.3.2.

We start by computing 128 SURF features [4], and then calculate matches based

on the Euclidean distances between the features found. Then to compute the camera
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Figure 3.5: An image showing a few matches (left), and the resulting 3D model (right)
without estimating the variables y for confidence in the 3D matching. The noisy 3D
matches reduce the quality of the model. (Note the cones erroneously projecting out
from the wall.)

poses Q = [Rotation, Translation] ∈ R
3×4 and the depths dT of the points matched,

we use bundle adjustment [77] followed by using monocular approximate depths to

remove the scale ambiguity. However, many of these 3D correspondences are noisy;

for example, local structures are often repeated across an image (e.g., Fig. 3.5, 3.8

and 3.10).6 Therefore, we also model the “confidence” yT i in the ith match by using

logistic regression to estimate the probability P (yT i = 1) of the match being correct.

For this, we use neighboring 3D matches as a cue. For example, a group of spatially

consistent 3D matches is more likely to be correct than a single isolated 3D match.

We capture this by using a feature vector that counts the number of matches found

6Increasingly many cameras and camera-phones come equipped with GPS, and sometimes also
accelerometers (which measure gravity/orientation). Many photo-sharing sites also offer geo-tagging
(where a user can specify the longitude and latitude at which an image was taken). Therefore, we
could also use such geo-tags (together with a rough user-specified estimate of camera orientation),
together with monocular cues, to improve the performance of correspondence algorithms. In detail,
we compute the approximate depths of the points using monocular image features as d̂ = xT θ; this
requires only computing a dot product and hence is fast. Now, for each point in an image B for
which we are trying to find a correspondence in image A, typically we would search in a band around
the corresponding epipolar line in image A. However, given an approximate depth estimated from
from monocular cues, we can limit the search to a rectangular window that comprises only a subset
of this band. (See Fig. 3.6.) This would reduce the time required for matching, and also improve
the accuracy significantly when there are repeated structures in the scene, e.g., in Fig. 3.7 (See [150]
for more details.)
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in the present superpixel and in larger surrounding regions (i.e., at multiple spatial

scales), as well as measures the relative quality between the best and second best

match.

Figure 3.6: Approximate monocular depth estimates help to limit the search area
for finding correspondences. For a point (shown as a red dot) in image B, the corre-
sponding region to search in image A is now a rectangle (shown in red) instead of a
band around its epipolar line (shown in purple) in image A.

3.3.4 Phantom planes

This cue enforces occlusion constraints across multiple cameras. Concretely, each

small plane (superpixel) comes from an image taken by a specific camera. Therefore,

Figure 3.7: (a) Bad correspondences, caused by repeated structures in the world. (b)
Use of monocular depth estimates results in better correspondences. Note the these
correspondences are still fairly sparse and slightly noisy, and are therefore insufficient
for creating a good 3D model if we do not additionally use monocular cues.
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there must be an unoccluded view between the camera and the 3D position of that

small plane—i.e., the small plane must be visible from the camera location where

its picture was taken, and it is not plausible for any other small plane (one from a

different image) to have a 3D position that occludes this view. This cue is important

because often the connected structure terms, which informally try to “tie” points

in two small planes together, will result in models that are inconsistent with this

occlusion constraint, and result in what we call “phantom planes”—i.e., planes that

are not visible from the camera that photographed it. We penalize the distance

between the offending phantom plane and the plane that occludes its view from the

camera by finding additional correspondences. This tends to make the two planes lie

in exactly the same location (i.e., have the same plane parameter), which eliminates

the phantom/occlusion problem.

(a) (b) (c) (d)

(e) (f)

Figure 3.8: (a,b,c) Three original images from different viewpoints; (d,e,f) Snapshots
of the 3D model predicted by our algorithm. (f) shows a top-down view; the top part
of the figure shows portions of the ground correctly modeled as lying either within or
beyond the arch.
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(a) (b) (c) (d)

Figure 3.9: (a,b) Two original images with only a little overlap, taken from the same
camera location. (c,d) Snapshots from our inferred 3D model.

(a) (b) (c) (d)

Figure 3.10: (a,b) Two original images with many repeated structures; (c,d) Snap-
shots of the 3D model predicted by our algorithm.
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(a) (b) (c) (d)

(e) (f)

Figure 3.11: (a,b,c,d) Four original images; (e,f) Two snapshots shown from a larger
3D model created using our algorithm.

3.3.5 Experiments

In this experiment, we create a photo-realistic 3D model of a scene given only a few

images (with unknown location/pose), even ones taken from very different viewpoints

or with little overlap. Fig. 3.8, 3.9, 3.10 and 3.11 show snapshots of some 3D mod-

els created by our algorithm. Using monocular cues, our algorithm is able to create

full 3D models even when large portions of the images have no overlap (Fig. 3.8, 3.9

and 3.10). In Fig. 3.8, monocular predictions (not shown) from a single image gave

approximate 3D models that failed to capture the arch structure in the images. How-

ever, using both monocular and triangulation cues, we were able to capture this 3D

arch structure. The models are available at:

http://make3d.stanford.edu/research
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3.4 Discussion

We have presented a learning algorithm based on MRFs that captures monocular cues

and incorporates them into a stereo system so as to obtain significantly improved

depth estimates. The monocular cues and (purely geometric) stereo cues largely

orthogonal, and therefore complimentary, types of information about depth. We

show that by using both monocular and stereo cues, we obtain significantly more

accurate depth estimates than is possible using either monocualr or stereo cues alone.

We then preesented an algorithm that builds large 3D reconstructions of outdoor

environments, given only a small number of images. Our algorithm segments each

of the images into a number of small planes, and simultaneously infers the 3D posi-

tion and orientation of each plane in every image. Using an MRF, it reasons about

both monocular depth cues and triangulation cues, while further taking into account

various properties of the real world, such as occlusion, co-planarity, and others.



Chapter 4

Obstacle Avoidance using

Monocular Vision

4.1 Introduction

Consider the problem of a small robot trying to navigate through a cluttered envi-

ronment, for example, a small electric car through a forest (see Figure 4.1). In this

chapter, we consider the problem of obstacle avoidance for a remote control car in

unstructured outdoor environments.

We present an approach in which supervised learning is first used to estimate

depths from a single monocular image. For the purposes of driving a car, we do not

need to estimate depths at each point in the image (as we did in chapter 2). It is

sufficient to be able to estimate a single depth value for each steering direction (i.e.,

distance to the obstacle in each steering direction). Our learning algorithm is trained

using images labeled with ground-truth distances to the closest obstacles. Since we

are estimating depth only in each steering direction (a 1D problem) instead of each

point in the image (a 2D problem), the learning model is significantly simplified. The

resulting algorithm is able to learn monocular vision cues that accurately estimate

the relative depths of obstacles in a scene. Reinforcement learning/policy search is

then applied within a simulator that renders synthetic scenes. This learns a control

policy that selects a steering direction as a function of the vision system’s output.

81
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We present results evaluating the predictive ability of the algorithm both on held out

test data, and in actual autonomous driving experiments.

Figure 4.1: (a) The remote-controlled car driven autonomously in various cluttered
unconstrained environments, using our algorithm. (b) A view from the car, with
the chosen steering direction indicated by the red square; the estimated distances to
obstacles in the different directions are shown by the bar graph below the image.

Most work on obstacle detection using vision has focused on binocular vision/steoreopsis.

In this paper, we present a monocular vision obstacle detection algorithm based on

supervised learning. Our motivation for this is two-fold: First, we believe that single-

image monocular cues have not been effectively used in most obstacle detection sys-

tems; thus we consider it an important open problem to develop methods for obstacle

detection that exploit these monocular cues. Second, the dynamics and inertia of

high speed driving (5m/s on a small remote control car) means that obstacles must

be perceived at a distance if we are to avoid them, and the distance at which stan-

dard binocular vision algorithms can perceive them is fundamentally limited by the

“baseline” distance between the two cameras and the noise in the observations [24],

and thus difficult to apply to our problem.1

1While it is probably possible, given sufficient effort, to build a stereo system for this task, the
one commercial system we evaluated (because of vibrations and motion blur) was unable to reliably
detect obstacles even at 1m range.
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We collected a dataset of several thousand images, each correlated with a laser

range scan that gives the distance to the nearest obstacle in each direction. After

training on this dataset (using the laser range scans as the ground-truth target labels),

a supervised learning algorithm is then able to accurately estimate the distances to

the nearest obstacles in the scene. This becomes our basic vision system, the output

of which is fed into a higher level controller trained using reinforcement learning.

An addition motivation for our work stems from the observation that the majority

of successful robotic applications of RL (including autonomous helicopter flight, some

quadruped/biped walking, snake robot locomotion, etc.) have relied on model-based

RL [59], in which an accurate model or simulator of the MDP is first built.2 In control

tasks in which the perception problem is non-trivial—such as when the input sensor

is a camera—the quality of the simulator we build for the sensor will be limited by

the quality of the computer graphics we can implement. We were interested in asking:

Does model-based reinforcement learning still make sense in these settings?

Since many of the cues that are useful for estimating depth can be re-created

in synthetic images, we implemented a graphical driving simulator. We ran exper-

iments in which the real images and laser scan data was replaced with synthetic

images. Our learning algorithm can be trained either on real camera images labeled

with ground-truth distances to the closest obstacles, or on a training set consisting of

synthetic graphics images. This is interesting in scenarios where real data for train-

ing might not be readily available. We also used the graphical simulator to train a

reinforcement learning algorithm, and ran experiments in which we systematically

varied the level of graphical realism. We show that, surprisingly, even using low- to

medium-quality synthetic images, it is often possible to learn depth estimates that

give reasonable results on real camera test images. We also show that, by combin-

ing information learned from both the synthetic and the real datasets, the resulting

vision system performs better than one trained on either one of the two. Similarly,

the reinforcement learning controller trained in the graphical simulator also performs

well in real world autonomous driving. Videos showing the system’s performance

in real world driving experiments (using the vision system built with supervised

2Some exceptions to this include [63, 66].
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learning, and the controller learned using reinforcement learning) are available at

http://ai.stanford.edu/∼asaxena/rccar/

4.2 Related work

The most commonly studied for this problem is stereo vision [155]. Depth-from-

motion or optical flow is based on motion parallax [3]. Both methods require finding

correspondence between points in multiple images separated over space (stereo) or

time (optical flow). Assuming that accurate correspondences can be established,

both methods can generate very accurate depth estimates. However, the process of

searching for image correspondences is computationally expensive and error prone,

which can dramatically degrade the algorithm’s overall performance.

Gini [36] used single camera vision to drive a indoor robot, but relied heavily

on the known color and texture of the ground, and hence does not generalize well

and will fail in unstructured outdoor environments. In [118], monocular vision and

apprenticeship learning (also called imitation learning) was used to drive a car, but

only on highly structured roads and highways with clear lane markings, in which the

perception problem is much easier. [72] also successfully applied imitation learning

to driving in richer environments, but relied on stereo vision.

4.3 Vision system

For the purposes of driving a car, we do not need to estimate depths at each point in

the image. It is sufficient to be able to estimate a single depth value for each steering

direction (i.e., distance to the obstacle in each steering direction).

Therefore, we formulate the vision problem as one of depth estimation over vertical

stripes of the image. The output of this system will be fed as input to a higher level

control algorithm.

In detail, we divide each image into vertical stripes. These stripes can informally

be thought of as corresponding to different steering directions. In order to learn to

estimate distances to obstacles in outdoor scenes, we collected a dataset of several
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Figure 4.2: Laser range scans overlaid on the image. Laser scans give one range
estimate per degree.

thousand outdoor images (Fig. 4.2). Each image is correlated with a laser range

scan (using a SICK laser range finder, along with a mounted webcam of resolution

352x288, Fig. 4.3), that gives the distance to the nearest obstacle in each stripe of the

image. We create a spatially arranged vector of local features capturing monocular

depth cues. To capture more of the global context, the feature vector of each stripe

is augmented with the features of the stripe to the left and right. We use linear

regression on these features to learn to predict the relative distance to the nearest

obstacle in each of the vertical stripes.

Since many of the cues that we used to estimate depth can be re-created in syn-

thetic images, we also developed a custom driving simulator with a variable level

of graphical realism. By repeating the above learning method on a second data set

consisting of synthetic images, we learn depth estimates from synthetic images alone.

Additionally, we combine information learned from the synthetic dataset with that

learned from real images, to produce a vision system that performs better than either

does individually.
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Figure 4.3: Rig for collecting correlated laser range scans and real camera images.

4.3.1 Feature vector

Each image is divided into 16 stripes, each one labeled with the distance to the

nearest obstacle. In order to emphasize multiplicative rather than additive errors,

we converted each distance to a log scale. Early experiments training with linear

distances gave poor results (details omitted due to space constraints).

Each stripe is divided into 11 vertically overlapping windows (Fig. 4.4). We denote

each window as Wsr for s = 1...16 stripes and r = 1...11 windows per stripe. For each

window, coefficients representing texture energies and texture gradients are calculated

as described below. Ultimately, the feature vector for a stripe consists of coefficients

for that stripe, the stripe to its left, and the stripe to its right. Thus, the spatial

arrangement in the feature vector for the windows allows some measure of global

structure to be encoded in it.
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Figure 4.4: For each overlapping window Wsr, statistical coefficients (Law’s texture
energy, Harris angle distribution, Radon) are calculated. The feature vector for a
stripe consists of the coefficients for itself, its left column and right column.
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Computation speed is the limiting criterion while designing features for this problem—

the vision system has to operate at more than about 10 fps in order for the car to

successfully avoid obstacles. Therefore, we only use the first nine of the filters in

(Fig. 2.4). We apply these 9 masks to the intensity channel image IY , and for the

color channels Cb and Cr, we calculate the local averaging mask M1 only; this gives

a total of 11 texture energy coefficients for each window. Lastly, we estimate the

texture energy En for the rth window in the sth stripe (denoted as Wsr) as

En(s, r) =
∑

x,y∈Wsr

|Fn(x, y)| (4.1)

In order to calculate a texture gradient that is robust to noise in the image and that

can capture a greater variety of textures, we use a variant of the Radon transform3 and

a variant of the Harris corner detector.4 These features measure how the directions

of edges in each window are distributed.

4.3.2 Training

Using the labeled data and the feature vector for each column as described above, we

trained linear models to estimate the log distance to the nearest obstacle in a stripe

of the image. In the simplest case, standard linear regression was used in order to

3The Radon transform is a standard method for estimating the density of edges at various ori-
entations. [24] We found the distribution of edges for each window Wsr using a variant of the this
method. The Radon transform maps an image I(x, y) into a new (θ, ρ) coordinate system, where θ
corresponds to possible edge orientations. Thus the image is now represented as Iradon(θ, ρ) instead
of I(x, y). For each of 15 discretized values of θ, we pick the highest two values of Iradon(θ, ρ) by
varying ρ, i.e., R(θ) = toptwoρ(g(θ, ρ))

4A second approach to finding distributions of directional edges over windows in the image is to
use a corner detector. [24] More formally, given an image patch p (in our case 5x5 pixels), the Harris
corner detector first computes the 2x2 matrix M of intensity gradient covariances, and then compares
the relative magnitude of the matrix’s two eigenvalues. [24] We use a slightly different variant of this
algorithm, in which rather than thresholding on the smaller eigenvalue, we first calculate the angle
represented by each eigenvector and put the eigenvalues into bins for each of 15 angles. We then
sum up all of the eigenvalues in each bin over a window and use the sums as the input features to
the learning algorithm.
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find weights w for N total images and S stripes per image

w = arg min
w

N
∑

i=1

S
∑

s=1

(

wTxis − ln(di(s))
)2

(4.2)

where, xis is the feature vector for stripe s of the ith image, and di(s) is the distance

to the nearest obstacle in that stripe.

Additionally, we experimented with outlier rejection methods such as robust re-

gression (iteratively re-weighted using the “fair response” function, Huber, 1981) . For

this task, this method did not provide significant improvements over linear regres-

sion, and simple minimization of the sum of squared errors produced nearly identical

results to the more complex methods. All of the results below are given for linear

regression.

4.3.3 Synthetic graphics data

We created graphics datasets of synthetic images of typical scenes that we expect

to see while driving the car. Graphics data with various levels of detail were cre-

ated, ranging from simple two-color trees of uniform height without texture; through

complex scenes with five different kind of trees of varying heights, along with tex-

ture, haze and shadows (Fig. 4.5). The scenes were created by placing trees randomly

throughout the environment (by sampling tree locations from a uniform distribution).

The width and height of each tree was again chosen uniformly at random between a

minimum and maximum value.

There are two reasons why it is useful to supplement real images with synthetic

ones. First, a very large amount of synthetica data can be inexpensively created,

spanning a variety of environments and scenarios. Comparably large and diverse

amounts of real world data would have been much harder to collect. Second, in

the synthetic data, there is no noise in the labels of the ground truth distances to

obstacles.
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Figure 4.5: Graphics images in order of increasing level of detail. (In color, where
available.) (a) Uniform trees, (b) Different types of trees of uniform size, (c) Trees
of varying size and type, (d) Increased density of trees, (e) Texture on trees only, (f)
Texture on ground only, (g) Texture on both, (h) Texture and Shadows.

4.3.4 Error metrics

Since the ultimate goal of these experiments is to be able to drive a remote control

car autonomously, the estimation of distance to nearest obstacle is really only a proxy

for true goal of choosing the best steering direction. Successful distance estimation

allows a higher level controller to navigate in a dense forest of trees by simply steering

in the direction that is the farthest away. The real error metric to optimize in this

case should be the mean time to crash. However, since the vehicle will be driving in

unstructured terrain, experiments in this domain are not easily repeatable.

In the ith image, let α be a possible steering direction (with each direction corre-

sponding to one of the vertical stripes in the image), let αchosen be steering direction

chosen by the vision system (chosen by picking the direction cooresponding to the

farthest predicted distance), let di(α) be the actual distance to the obstacle in direc-

tion α, and let d̂i(α) be the distance predicted by the learning algorithm. We use the

following error metrics:
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Depth. The mean error in log-distance estimates of the stripes is defined as

Edepth =
1

N

1

S

N
∑

i=1

S
∑

s=1

∣

∣

∣ln(di(s)) − ln(d̂i(s))
∣

∣

∣ (4.3)

Relative Depth To calculate the relative depth error, we remove the mean from the

true and estimated log-distances for each image. This gives a free-scaling constraint

to the depth estimates, reducing the penalty for errors in estimating the scale of the

scene as a whole.

Choosen Direction Error. When several steering directions α have nearly identical

di(α), it is it is unreasonable to expect the learning algorithm to reliably pick out the

single best direction. Instead, we might wish only to ensure that di(αchosen) is nearly

as good as the best possible direction. To measure the degree to which this holds, we

define the error metric

Eα =
1

N

N
∑

i=1

∣

∣

∣
ln(max

s
(di(s)) − ln(di(αchosen))

∣

∣

∣
(4.4)

This gives us the difference between the true distance in the chosen direction and the

true distance in the actual best direction.

Hazard Rate. Because the car is driving at a high speed (about 5m/s), it will crash

into an obstacle when the vision system chooses a column containing obstacles less

than about 5m away. Letting dHazard=5m denote the distance at which an obstacle

becomes a hazard (and writing 1{·} to denote the indicator function), we define the

hazard-rate as

HazardRate =
1

N

N
∑

i=1

1{di(αchosen) < dHazard}, (4.5)

4.3.5 Combined vision system

We combined the system trained on synthetic data with the one trained on real images

in order to reduce the hazard rate error. The system trained on synthetic images alone

had a hazard rate of 11.0%, while the best performing real-image system had a hazard
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rate of 2.69%. Training on a combined dataset of real and synthetic images did not

produce any improvement over the real-image system, even though the two separately

trained algorithms make the same mistake only 1.01% of the time. Thus, we chose

a simple voting heuristic to improve the accuracy of the system. Specifically, we ask

each system output its top two steering directions, and a vote is taken among these

four outputs to select the best steering direction (breaking ties by defaulting to the

algorithm trained on real images). This results in a reduction of the hazard rate to

2.04% (Fig. 4.7).5

4.4 Control and reinforcement learning

In order to convert the output of the vision system into actual steering commands for

the remote control car, a control policy must be developed. The policy controls how

aggressively to steer, what to do if the vision system predicts a very near distance for

all of the possible steering directions in the camera-view, when to slow down, etc. We

model the RC car control problem as a Markov decision process (MDP) [169]. We

then used the Pegasus policy search algorithm [101] (with locally greedy search) to

learn the the parameters of our control policy. Here is a description of the six learned

parameters6 of our control policy:

• θ1: σ of the Gaussian used for spatial smoothing of the predicted distances.

• θ2: if d̂i(αchosen) < θ2, take evasive action rather than steering towards αchosen.

• θ3: the maximum change in steering angle at any given time step.

• θ4, θ5: parameters used to choose which direction to turn if no location in the

image is a good steering direction (using the current steering direction and the

predicted distances of the left-most and right-most stripes of the image).

• θ6: the percent of max throttle to use during an evasive turn.

5The other error metrics are not directly applicable to this combined output.
6Since the simulator did not accurately represent complex ground contact forces that act on the

car when driving outdoors, two additional parameters were set manually: the maximum throttle,
and a turning scale parameter
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The reward function was given as

R(s) = −|vdesired − vactual| −K · Crashed (4.6)

where vdesired and vactual are the desired and actual speeds of the car, Crashed is a

binary variable stating whether or not the car has crashed in that time step. In our

experiments, we used K = 1000. Thus, the vehicle attempts to maintain the desired

forward speed while minimizing contact with obstacles.

Each trial began with the car initialized at (0,0) in a randomly generated environ-

ment and ran for a fixed time horizon. The learning algorithm converged after 1674

iterations of policy search.

Figure 4.6: Experimental setup showing the car and the instruments to control it
remotely.
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4.5 Experiments

4.5.1 Experimental setup

Our test vehicle is based on an off-the-shelf remote control car (the Traxxas Stampede

measuring 12”x16”x9” with wheel clearance of about 2”). We mounted on it a Drag-

onFly spy camera (from PointGrey Research, 320x240 pixel resolution, 4mm focal

length). The camera transmits images at up to 20 frames per second to a receiver

attached to a laptop running a 1.6GHz Pentium. Steering and throttle commands are

sent back to the RC transmitter from the laptop via a custom-built serial interface.

Finally, the RC transmitter sends the commands directly to the car. The system ran

at about 10 frames-per-second (fps).

4.5.2 Results

Table 4.2 shows the test-set error rates obtained using different feature vectors, when

training on real camera images. As a baseline for comparing the performance of

different features, the first row in the table shows the error obtained by using no

feature at all (i.e., always predict the mean distance and steer randomly). The results

indicate that texture energy and texture gradient have complementary information,

with their combination giving better performance than either alone. Table 4.3 shows

the error rates for synthetic images at various degrees of detail. The performance of

the vision system trained on synthetic images alone first goes up as we add texture

in the images, and add variety in the images, by having different types and sizes of

trees. However, it drops when we add shadows and haze. We attribute this to the

fact that real shadows and haze are very different from the ones in synthetic images,

and the learning algorithm significantly over-fits these images (showing virtually no

error at all on synthetic test images).

Figure 4.7 shows hazard rates for the vision system relying on graphics-trained

weights alone, real images trained weights alone, and improvement after combining

the two systems.

We drove the car in four different locations and under different weather conditions
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Figure 4.7: Reduction in hazard rate by combining systems trained on synthetic and
real data.

Table 4.1: Real driving tests under different terrains

Obstacle Obstacle Ground Mean Max Avg
Density Type Time Time Speed

(sec) (sec) (m/s)

1 High Sculptures, Trees, Uneven Ground, 19 24 4
Bushes, Rocks Rocks, Leaves

2 Low Trees, Even, 40 80 6
man-made with Leaves
benches

3 Medium Trees Rough with 80 >200 2
4 Medium Uniform Trees, Leaves, tiles 40 70 5

benches

(see Fig. 4.8 for a few snapshots). The learned controller parameters were directly

ported from the simulator to the real world (rescaled to fit in the range of steering and

throttle commands allowed by the real vehicle). For each location, the mean time7

7Some of the test locations were had nearby roads, and it was unsafe to allow the car to continue
driving outside the bounds of our testing area. In these cases, the car was given a restart and the
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Figure 4.8: An image sequence showing the car avoiding a small bush, a difficult
obstacle to detect in presence of trees which are larger visually yet more distant. (a)
First row shows the car driving to avoid a series of obstacles (b) Second row shows
the car view. (Blue square is the largest distance direction. Red square is the chosen
steering direction by the controller.) (Best viewed in color)

before crash is given in Table 4.1. All the terrain types had man-made structures

(like cars and buildings) in the background. The unstructured testing sites were

limited to areas where no training or development images were taken. Videos of the

learned controller driving autonomously are available on the web at the URL given in

Section 4.1. Performance while driving in the simulator was comparable to the real

driving tests.

4.6 Discussion

We have used supervised learning to learn monocular depth estimates, and used them

to drive an RC car at high speeds through the environment. Further, the experiments

with the graphical simulator show that model-based RL holds great promise even in

settings involving complex environments and complex perception. In particular, a

vision system trained on computer graphics was able to give reasonable depth estimate

on real image data, and a control policy trained in a graphical simulator worked well

on real autonomous driving.

time was accumulated.
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Table 4.2: Test error on 3124 images, obtained on different feature vectors after train-
ing data on 1561 images. For the case of “None” (without any features), the system
predicts the same distance for all stripes, so relative depth error has no meaning.

Feature Edepth
Rel
Depth

Eα
Hazard
Rate

None .900 - 1.36 23.8%
Y (intensity) .748 .578 .792 9.58%
Laws only .648 .527 .630 2.82%
Laws .640 .520 .594 2.75%
Radon .785 .617 .830 6.47%
Harris .687 .553 .713 4.55%
Law+Harris .612 .508 .566 2.69%
Laws+Radon .626 .519 .581 2.88%
Harris+Radon .672 .549 .649 3.20%
Law+Har+Rad .604 .508 .546 2.69%

Table 4.3: Test error on 1561 real images, after training on 667 graphics images, with
different levels of graphics realism using Laws features.

Train Edepth
Rel
Depth

Eα
Hazard
Rate

None .900 - 1.36 23.8%
Laser Best .604 .508 .546 2.69%
Graphics-8 .925 .702 1.23 15.6%
Graphics-7 .998 .736 1.10 12.8%
Graphics-6 .944 .714 1.04 14.7%
Graphics-5 .880 .673 .984 11.0%
Graphics-4 1.85 1.33 1.63 34.4%
Graphics-3 .900 .694 1.78 38.2%
Graphics-2 .927 .731 1.72 36.4%
Graphics-1 1.27 1.00 1.56 30.3%
G-5 (L+Harris) .929 .713 1.11 14.5%



Chapter 5

Robotic Grasping: Identifying

Grasp-point

5.1 Introduction

We consider the problem of grasping novel objects, specifically ones that are being

seen for the first time through vision. The ability to grasp a previously unknown

object is a challenging yet important problem for robots. For example, a household

robot can use this ability to perform tasks such as cleaning up a cluttered room

and unloading items from a dishwasher. In this chapter, we will present a learning

algorithm that enables a robot to grasp a wide-variety of commonly found objects,

such as plates, tape-rolls, jugs, cellphones, keys, screwdrivers, staplers, a thick coil of

wire, a strangely shaped power horn, and others.

Modern-day robots can be carefully hand-programmed or “scripted” to carry out

many complex manipulation tasks, ranging from using tools to assemble complex

machinery, to balancing a spinning top on the edge of a sword [162]. However, au-

tonomously grasping a previously unknown object still remains a challenging problem.

If we are trying to grasp a previously known object, or if we are able to obtain a full 3D

model of the object, then various approaches such as ones based on friction cones [85],

form- and force-closure [7], pre-stored primitives [89], or other methods can be ap-

plied. However, in practical scenarios it is often very difficult to obtain a full and

98
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Figure 5.1: Our robot unloading items from a dishwasher.

accurate 3D reconstruction of an object seen for the first time through vision. For

stereo systems, 3D reconstruction is difficult for objects without texture, and even

when stereopsis works well, it would typically reconstruct only the visible portions of

the object. Even if more specialized sensors such as laser scanners (or active stereo)

are used to estimate the object’s shape, we would still only have a 3D reconstruction

of the front face of the object.

In contrast to these approaches, we propose a learning algorithm that neither

requires, nor tries to build, a 3D model of the object. Instead it predicts, directly

as a function of the images, a point at which to grasp the object. Informally, the
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Figure 5.2: Some examples of objects on which the grasping algorithm was tested.

algorithm takes two or more pictures of the object, and then tries to identify a point

within each 2D image that corresponds to a good point at which to grasp the object.

(For example, if trying to grasp a coffee mug, it might try to identify the mid-point

of the handle.) Given these 2D points in each image, we use triangulation to obtain

a 3D position at which to actually attempt the grasp. Thus, rather than trying to

triangulate every single point within each image in order to estimate depths—as in

dense stereo—we only attempt to triangulate one (or at most a small number of)

points corresponding to the 3D point where we will grasp the object. This allows

us to grasp an object without ever needing to obtain its full 3D shape, and applies

even to textureless, translucent or reflective objects on which standard stereo 3D

reconstruction fares poorly (see Figure 5.5).

To the best of our knowledge, our work represents the first algorithm capable of

grasping novel objects (ones where a 3D model is not available), including ones from

novel object classes, that we are perceiving for the first time using vision.

This paper focuses on the task of grasp identification, and thus we will consider

only objects that can be picked up without performing complex manipulation.1 We

1For example, picking up a heavy book lying flat on a table might require a sequence of com-
plex manipulations, such as to first slide the book slightly past the edge of the table so that the
manipulator can place its fingers around the book.
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will attempt to grasp a number of common office and household objects such as

toothbrushes, pens, books, cellphones, mugs, martini glasses, jugs, keys, knife-cutters,

duct-tape rolls, screwdrivers, staplers and markers (see Figure 5.2). We will also

address the problem of unloading items from dishwashers.

The remainder of this chapter is structured as follows. In Section 5.2, we describe

related work. In Section 5.3, we describe our learning approach, as well as our proba-

bilistic model for inferring the grasping point. In Section 5.5, we describe our robotic

manipulation platforms. In Section 5.6, we describe the motion planning/trajectory

planning for moving the manipulator to the grasping point. In Section 5.7, we re-

port the results of extensive experiments performed to evaluate our algorithm, and

Section 5.8 concludes.

5.2 Related work

Most work in robot manipulation assumes availability of a complete 2D or 3D model

of the object, and focuses on designing control and planning methods to achieve

a successful and stable grasp. Here, we will discuss in detail prior work that uses

learning or vision for robotic manipulation, and refer the reader to [7, 85, 161] for a

more general survey of past work in robotic manipulation.

In simulation environments (without real world experiments), learning has been

applied to robotic manipulation for several different purposes. For example, [107]

used Support Vector Machines (SVM) to estimate the quality of a grasp given a

number of features describing the grasp and the object. [48, 49] used partially ob-

servable Markov decision processes (POMDP) to choose optimal control policies for

two-fingered hands. They also used imitation learning to teach a robot whole-body

grasps. [89] used heuristic rules to generate and evaluate grasps for three-fingered

hands by assuming that the objects are made of basic shapes such as spheres, boxes,

cones and cylinders each with pre-computed grasp primitives. All of these methods

assumed full knowledge of the 3D model of the object. Further, these methods were

not tested through real-world experiments, but were instead modeled and evaluated

in a simulator.
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If a 3D model of the object is given, then one can use techniques such as form-

and force-closure to compute stable grasps, i.e., the grasps with complete restraint.

A grasp with complete restraint prevents loss of contact and thus is very secure. A

form-closure of a solid object is a finite set of wrenches (force-moment combinations)

applied on the object, with the property that any other wrench acting on the object

can be balanced by a positive combination of the original ones [85]. Intuitively, form

closure is a way of defining the notion of a “firm grip” of the object [82]. It gurantees

maintenance of contact as long as the links of the hand and the object are well

approximated as rigid and as long as the joint actuators are sufficiently strong [123].

[75] proposed an efficient algorithm for computing all n-finger form-closure grasps on a

polygonal object based on a set of sufficient and necessary conditions for form-closure.

The primary difference between form-closure and force-closure grasps is that force-

closure relies on contact friction. This translates into requiring fewer contacts to

achieve force-closure than form-closure[73, 47, 90]. [131] demonstrated that a neces-

sary and sufficient condition for force-closure is that the primitive contact wrenches

resulted by contact forces positively span the entire wrench space. [102] considered

force-closure for planar grasps using friction points of contact. Ponce et al. presented

several algorithms for computing force-closure grasps. In [119], they presented al-

gorithms for computing force-closure grasps for two fingers for curved 2D objects.

In [120], they considered grasping 3D polyhedral objects with a hand equipped with

four hard fingers and assumed point contact with friction. They proved necessary

and sufficient conditions for equilibrium and force-closure, and present a geometric

characterization of all possible types of four-finger equilibrium grasps. [6] investi-

gated the form and force closure properties of the grasp, and proved the equivalence

of force-closure analysis with the study of the equilibria of an ordinary differential

equation. All of these methods focussed on inferring the configuration of the hand

that results in a stable grasp. However, they assumed that the object’s full 3D model

is available in advance.

Some work has been done on using vision for real world grasping experiments;

however most were limited to grasping 2D planar objects. For uniformly colored

planar objects lying on a uniformly colored table top, one can find the 2D contour
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(a) Martini glass (b) Mug (c) Eraser (d) Book (e) Pencil

Figure 5.3: The images (top row) with the corresponding labels (shown in red in the
bottom row) of the five object classes used for training. The classes of objects used
for training were martini glasses, mugs, whiteboard erasers, books and pencils.

of the object quite reliably. Using local visual features (based on the 2D contour)

and other properties such as form- and force-closure, the methods discussed below

decide the 2D locations at which to place (two or more) fingertips to grasp the object.

[113, 19] estimated 2D hand orientation using K-means clustering for simple objects

(specifically, square, triangle and round “blocks”). [94, 95] calculated 2D positions of

three-fingered grasps from 2D object contours based on feasibility and force closure

criteria. [12] also considered the grasping of planar objects and chose the location of

the three fingers of a hand by first classifying the object as circle, triangle, square or

rectangle from a few visual features, and then using pre-scripted rules based on fuzzy

logic. [56] used Q-learning to control the arm to reach towards a spherical object to

grasp it using a parallel plate gripper.

If the desired location of the grasp has been identified, techniques such as visual

servoing that align the gripper to the desired location [69] or haptic feedback [109] can

be used to pick up the object. [114] learned to sequence together manipulation gaits

for four specific, known 3D objects. However, they considered fairly simple scenes,

and used online learning to associate a controller with the height and width of the
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bounding ellipsoid containing the object. For grasping known objects, one can also

use Learning-by-Demonstration [54], in which a human operator demonstrates how

to grasp an object, and the robot learns to grasp that object by observing the human

hand through vision.

The task of identifying where to grasp an object (of the sort typically found in the

home or office) involves solving a difficult perception problem. This is because the

objects vary widely in appearance, and because background clutter (e.g., dishwasher

prongs or a table top with a pattern) makes it even more difficult to understand the

shape of a scene. There are numerous robust learning algorithms that can infer useful

information about objects, even from a cluttered image. For example, there is a large

amount of work on recognition of known object classes (such as cups, mugs, etc.),

e.g., [157]. The performance of these object recognition algorithms could probably be

improved if a 3D model of the object were available, but they typically do not require

such models. For example, that an object is cup-shaped can often be inferred directly

from a 2D image. Our approach takes a similar direction, and will attempt to infer

grasps directly from 2D images, even ones containing clutter. [134, 149] also showed

that given just a single image, it is often possible to obtain the 3D structure of a

scene. While knowing the 3D structure by no means implies knowing good grasps,

this nonetheless suggests that most of the information in the 3D structure may already

be contained in the 2D images, and suggests that an approach that learns directly

from 2D images holds promise. Indeed, [83] showed that humans can grasp an object

using only one eye.

Our work also takes inspiration from [16], which showed that cognitive cues and

previously learned knowledge both play major roles in visually guided grasping in

humans and in monkeys. This indicates that learning from previous knowledge is an

important component of grasping novel objects. Further, [38] showed that there is a

dissociation between recognizing objects and grasping them, i.e., there are separate

neural pathways that recognize objects and that direct spatial control to reach and

grasp the object. Thus, given only a quick glance at almost any rigid object, most

primates can quickly choose a grasp to pick it up, even without knowledge of the

object type. Our work represents perhaps a first step towards designing a vision
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grasping algorithm which can do the same.

5.3 Learning the grasping point

We consider the general case of grasping objects—even ones not seen before—in 3D

cluttered environments such as in a home or office. To address this task, we will use

an image of the object to identify a location at which to grasp it.

Because even very different objects can have similar sub-parts, there are certain

visual features that indicate good grasps, and that remain consistent across many

different objects. For example, jugs, cups, and coffee mugs all have handles; and

pens, white-board markers, toothbrushes, screw-drivers, etc. are all long objects

that can be grasped roughly at their mid-point (Figure 5.3). We propose a learning

approach that uses visual features to predict good grasping points across a large range

of objects.

In our approach, we will first predict the 2D location of the grasp in each image;

more formally, we will try to identify the projection of a good grasping point onto

the image plane. Then, given two (or more) images of an object taken from different

camera positions, we will predict the 3D position of a grasping point. If each of these

points can be perfectly identified in each image, then we can easily “triangulate” from

these images to obtain the 3D grasping point. (See Figure 5.7a.) In practice it is

difficult to identify the projection of a grasping point into the image plane (and, if

there are multiple grasping points, then the correspondence problem—i.e., deciding

which grasping point in one image corresponds to which point in another image—

must also be solved). This problem is further exacerbated by imperfect calibration

between the camera and the robot arm, and by uncertainty in the camera position if

the camera was mounted on the arm itself. To address all of these issues, we develop a

probabilistic model over possible grasping points, and apply it to infer a good position

at which to grasp an object.
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5.3.1 Grasping point

For most objects, there is typically a small region that a human (using a two-fingered

pinch grasp) would choose to grasp it; with some abuse of terminology, we will infor-

mally refer to this region as the “grasping point,” and our training set will contain

labeled examples of this region. Examples of grasping points include the center region

of the neck for a martini glass, the center region of the handle for a coffee mug, etc.

(See Figure 5.3.)

For testing purposes, we would like to evaluate whether the robot successfully

picks up an object. For each object in our test set, we define the successful grasp

region to be the region where a human/robot using a two-fingered pinch grasp would

(reasonably) be expected to successfully grasp the object. The error in predicting the

grasping point (reported in Table 5.1) is then defined as the distance of the predicted

point from the closest point lying in this region. (See Figure 5.4; this region is

usually somewhat larger than that used in the training set, defined in the previous

paragraph.) Since our gripper (Figure 5.1) has some passive compliance because of

attached foam/rubber, and can thus tolerate about 0.5cm error in positioning, the

successful grasping region may extend slightly past the surface of the object. (E.g.,

the radius of the cylinder in Figure 5.4 is about 0.5cm greater than the actual neck

of the martini glass.)

5.3.2 Synthetic data for training

We apply supervised learning to identify patches that contain grasping points. To

do so, we require a labeled training set, i.e., a set of images of objects labeled with

the 2D location of the grasping point in each image. Collecting real-world data of

this sort is cumbersome, and manual labeling is prone to errors. Thus, we instead

chose to generate, and learn from, synthetic data that is automatically labeled with

the correct grasps. (We also used synthetic data to learn distances in natural scenes

for obstacle avoidance system, see 4.3.3.)

In detail, we generate synthetic images along with correct grasps (Figure 5.3)
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Figure 5.4: An illustration showing the grasp labels. The labeled grasp for a martini
glass is on its neck (shown by a black cylinder). For two predicted grasping points
P1 and P2, the error would be the 3D distance from the grasping region, i.e., d1 and
d2 respectively.



108 CHAPTER 5. ROBOTIC GRASPING: IDENTIFYING GRASP-POINT

using a computer graphics ray tracer.2 There is a relation between the quality of

the synthetically generated images and the accuracy of the algorithm. The better

the quality of the synthetically generated images and graphical realism, the better

the accuracy of the algorithm. Therefore, we used a ray tracer instead of faster, but

cruder, OpenGL style graphics. OpenGL style graphics have less realism, the learning

performance sometimes decreased with added graphical details in the rendered images

(see 4.3.3).

The advantages of using synthetic images are multi-fold. First, once a synthetic

model of an object has been created, a large number of training examples can be

automatically generated by rendering the object under different (randomly chosen)

lighting conditions, camera positions and orientations, etc. In addition, to increase

the diversity of the training data generated, we randomized different properties of

the objects such as color, scale, and text (e.g., on the face of a book). The time-

consuming part of synthetic data generation was the creation of the mesh models of

the objects. However, there are many objects for which models are available on the

internet that can be used with only minor modifications. We generated 2500 examples

from synthetic data, comprising objects from five object classes (see Figure 5.3).

Using synthetic data also allows us to generate perfect labels for the training set

with the exact location of a good grasp for each object. In contrast, collecting and

manually labeling a comparably sized set of real images would have been extremely

time-consuming.

We have made the data available online at:

http://ai.stanford.edu/∼asaxena/learninggrasp/data.html

5.3.3 Features

In our approach, we begin by dividing the image into small rectangular patches, and

for each patch predict if it contains a projection of a grasping point onto the image

2Ray tracing [37] is a standard image rendering method from computer graphics. It handles
many real-world optical phenomenon such as multiple specular reflections, textures, soft shadows,
smooth curves, and caustics. We used PovRay, an open source ray tracer.
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(a) (b)

Figure 5.5: (a) An image of textureless/transparent/reflective objects. (b) Depths
estimated by our stereo system. The grayscale value indicates the depth (darker being
closer to the camera). Black represents areas where stereo vision failed to return a
depth estimate.

plane.

Instead of relying on a few visual cues such as presence of edges, we will compute

a battery of features for each rectangular patch. By using a large number of different

visual features and training on a huge training set (Section 5.3.2), we hope to obtain

a method for predicting grasping points that is robust to changes in the appearance

of the objects and is also able to generalize well to new objects.

We start by computing features for three types of local cues: edges, textures, and

color. [146, 135] We transform the image into YCbCr color space, where Y is the in-

tensity channel, and Cb and Cr are color channels. We compute features representing

edges by convolving the intensity channel with 6 oriented edge filters (Figure 2.4).

Texture information is mostly contained within the image intensity channel, so we

apply 9 Laws’ masks to this channel to compute the texture energy. For the color

channels, low frequency information is most useful for identifying grasps; our color

features are computed by applying a local averaging filter (the first Laws mask) to

the 2 color channels. We then compute the sum-squared energy of each of these filter

outputs. This gives us an initial feature vector of dimension 17.

To predict if a patch contains a grasping point, local image features centered on
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the patch are insufficient, and one has to use more global properties of the object.

We attempt to capture this information by using image features extracted at multiple

spatial scales (3 in our experiments) for the patch. Objects exhibit different behav-

iors across different scales, and using multi-scale features allows us to capture these

variations. In detail, we compute the 17 features described above from that patch as

well as the 24 neighboring patches (in a 5x5 window centered around the patch of

interest). This gives us a feature vector x of dimension 1 ∗ 17 ∗ 3 + 24 ∗ 17 = 459.

(a) Coffee Pot (b) Duct tape (c) Marker (d) Mug (e) Synthetic Mar-
tini Glass

Figure 5.6: Grasping point classification. The red points in each image show the
locations most likely to be a grasping point, as predicted by our logistic regression
model. (Best viewed in color.)

Although we rely mostly on image-based features for predicting the grasping point,

some robots may be equipped with range sensors such as a laser scanner or a stereo

camera. In these cases (Section 5.7.3), we also compute depth-based features to

improve performance. More formally, we apply our texture based filters to the depth

image obtained from a stereo camera, append them to the feature vector used in

classification, and thus obtain a feature vector xs ∈ R
918. Applying these texture

based filters this way has the effect of computing relative depths, and thus provides

information about 3D properties such as curvature. However, the depths given by a

stereo system are sparse and noisy (Figure 5.5) because many objects we consider are

textureless or reflective. Even after normalizing for the missing depth readings, these

features improved performance only marginally.
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5.3.4 Probabilistic model

Using our image-based features, we will first predict whether each region in the image

contains the projection of a grasping point. Then in order to grasp an object, we will

statistically “triangulate” our 2D predictions to obtain a 3D grasping point.

In detail, on our manipulation platforms (Section 5.5), we have cameras mounted

either on the wrist of the robotic arm (Figure 5.11) or on a frame behind the robotic

arm (Figure 5.9). When the camera is mounted on the wrist, we command the arm

to move the camera to two or more positions, so as to acquire images of the object

from different viewpoints. However, there are inaccuracies in the physical positioning

of the arm, and hence there is some slight uncertainty in the position of the camera

when the images are acquired. We will now describe how we model these position

errors.

Formally, let C be the image that would have been taken if the actual pose of

the camera was exactly equal to the measured pose (e.g., if the robot had moved

exactly to the commanded position and orientation, in the case of the camera being

mounted on the robotic arm). However, due to positioning error, instead an image Ĉ

is taken from a slightly different location. Let (u, v) be a 2D position in image C, and

let (û, v̂) be the corresponding image position in Ĉ. Thus C(u, v) = Ĉ(û, v̂), where

C(u, v) is the pixel value at (u, v) in image C. The errors in camera position/pose

should usually be small,3 and we model the difference between (u, v) and (û, v̂) using

an additive Gaussian model: û = u+ ǫu, v̂ = v + ǫv, where ǫu, ǫv ∼ N(0, σ2).

Now, to predict which locations in the 2D image are grasping points (Figure 5.6),

we define the class label z(u, v) as follows. For each location (u, v) in an image C,

z(u, v) = 1 if (u, v) is the projection of a grasping point onto the image plane, and

z(u, v) = 0 otherwise. For a corresponding location (û, v̂) in image Ĉ, we similarly

define ẑ(û, v̂) to indicate whether position (û, v̂) represents a grasping point in the

image Ĉ. Since (u, v) and (û, v̂) are corresponding pixels in C and Ĉ, we assume

3The robot position/orientation error is typically small (position is usually accurate to within
1mm), but it is still important to model this error. From our experiments (see Section 5.7), if we set
σ2 = 0, the triangulation is highly inaccurate, with average error in predicting the grasping point
being 15.4 cm, as compared to 1.8 cm when appropriate σ2 is chosen.
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ẑ(û, v̂) = z(u, v). Thus:

P (z(u, v) = 1|C) = P (ẑ(û, v̂) = 1|Ĉ)

=

∫

ǫu

∫

ǫv

P (ǫu, ǫv)P (ẑ(u+ ǫu, v + ǫv) = 1|Ĉ)dǫudǫv (5.1)

Here, P (ǫu, ǫv) is the (Gaussian) density over ǫu and ǫv. We then use logistic regression

to model the probability of a 2D position (u+ ǫu, v + ǫv) in Ĉ being a good grasping

point:

P (ẑ(u+ ǫu, v + ǫv) = 1|Ĉ) = P (ẑ(u+ ǫu, v + ǫv) = 1|x; θ)

= 1/(1 + e−xT θ) (5.2)

where x ∈ R
459 are the features for the rectangular patch centered at (u + ǫu, v +

ǫv) in image Ĉ (described in Section 5.3.3). The parameter of this model θ ∈

R
459 is learned using standard maximum likelihood for logistic regression: θ∗ =

arg maxθ

∏

i P (zi|xi; θ), where (xi, zi) are the synthetic training examples (image

patches and labels), as described in Section 5.3.2. Figure 5.6a-d shows the result

of applying the learned logistic regression model to some real (non-synthetic) images.

3D grasp model: Given two or more images of a new object from different camera

positions, we want to infer the 3D position of the grasping point. (See Figure 5.7.)

Because logistic regression may have predicted multiple grasping points per image,

there is usually ambiguity in the correspondence problem (i.e., which grasping point

in one image corresponds to which graping point in another). To address this while

also taking into account the uncertainty in camera position, we propose a probabilistic

model over possible grasping points in 3D space. In detail, we discretize the 3D work-

space of the robotic arm into a regular 3D grid G ⊂ R
3, and associate with each grid

element j a random variable yj, so that yj = 1 if grid cell j contains a grasping point,

and yj = 0 otherwise.

From each camera location i = 1, ..., N , one image is taken. In image Ci, let the

ray passing through (u, v) be denoted Ri(u, v). Let Gi(u, v) ⊂ G be the set of grid-

cells through which the ray Ri(u, v) passes. Let r1, ...rK ∈ Gi(u, v) be the indices of
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Figure 5.7: (a) Diagram illustrating rays from two images C1 and C2 intersecting at
a grasping point (shown in dark blue). (Best viewed in color.)

the grid-cells lying on the ray Ri(u, v) .

We know that if any of the grid-cells rj along the ray represent a grasping point,

then its projection is a grasp point. More formally, zi(u, v) = 1 if and only if yr1
= 1 or

yr2
= 1 or . . . or yrK

= 1. For simplicity, we use a (arguably unrealistic) naive Bayes-

like assumption of independence, and model the relation between P (zi(u, v) = 1|Ci)

and P (yr1
= 1 or . . . or yrK

= 1|Ci) as

P (zi(u, v) = 0|Ci) = P (yr1
= 0, ..., yrK

= 0|Ci)

=
K
∏

j=1

P (yrj
= 0|Ci) (5.3)

Assuming that any grid-cell along a ray is equally likely to be a grasping point, this

therefore gives

P (yrj
= 1|Ci) = 1 − (1 − P (zi(u, v) = 1|Ci))

1/K (5.4)

Next, using another naive Bayes-like independence assumption, we estimate the
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probability of a particular grid-cell yj ∈ G being a grasping point as:

P (yj = 1|C1, ..., CN ) =
P (yj = 1)P (C1, ..., CN |yj = 1)

P (C1, ..., CN)

=
P (yj = 1)

P (C1, ..., CN)

N
∏

i=1

P (Ci|yj = 1)

=
P (yj = 1)

P (C1, ..., CN)

N
∏

i=1

P (yj = 1|Ci)P (Ci)

P (yj = 1)

∝
N
∏

i=1

P (yj = 1|Ci) (5.5)

where P (yj = 1) is the prior probability of a grid-cell being a grasping point (set to a

constant value in our experiments). One can envision using this term to incorporate

other available information, such as known height of the table when the robot is asked

to pick up an object from a table. Using Equations 5.1, 5.2, 5.4 and 5.5, we can now

compute (up to a constant of proportionality that does not depend on the grid-cell)

the probability of any grid-cell yj being a valid grasping point, given the images.4

Stereo cameras: Some robotic platforms have stereo cameras (e.g., the robot in

Figure 5.10); therefore we also discuss how our probabilistic model can incorporate

stereo images. From a stereo camera, since we also get a depth value w(u, v) for

each location (u, v) in the image,5 we now obtain a 3D image C(u, v, w(u, v)) for 3D

positions (u, v, w).

However because of camera positioning errors (as discussed before), we get Ĉ(û, v̂, ŵ(û, v̂))

instead of actual image C(u, v, w(u, v)). We again model the difference between

4In about 2% of the trials described in Section 5.7.2, grasping failed because the algorithm found
points in the images that did not actually correspond to each other. (E.g., in one image the point
selected may correspond to the midpoint of a handle, and in a different image a different point may
be selected that corresponds to a different part of the same handle.) Thus, triangulation using these
points results in identifying a 3D point that does not lie on the object. By ensuring that the pixel
values in a small window around each of the corresponding points are similar, one would be able to
reject some of these spurious correspondences.

5The depths estimated from a stereo camera are very sparse, i.e., the stereo system finds valid
points only for a few pixels in the image. (see Figure 5.5) Therefore, we still mostly rely on image
features to find the grasp points. The pixels where the stereo camera was unable to obtain a depth
are treated as regular (2D) image pixels.
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(u, v, w) and (û, v̂, ŵ) using an additive Gaussian: û = u+ ǫu, v̂ = v+ ǫv, ŵ = w+ ǫw,

where ǫu, ǫv ∼ N(0, σ2
uv). ǫw ∼ N(0, σ2

w). Now, for our class label z(u, v, w) in the 3D

image, we have:

P (z(u, v, w) = 1|C) = P (ẑ(û, v̂, ŵ) = 1|Ĉ)

=

∫

ǫu

∫

ǫv

∫

ǫw

P (ǫu, ǫv, ǫw)

P (ẑ(u+ ǫu, v + ǫv, w + ǫw) = 1|Ĉ)dǫudǫvdǫw (5.6)

Here, P (ǫu, ǫv, ǫw) is the (Gaussian) density over ǫu, ǫv and ǫw. Now our logistic

regression model is

P (ẑ(û, v̂, ŵ(û, v̂)) = 1|Ĉ) = P (ẑ(û, v̂, ŵ(û, v̂)) = 1|xs; θs)

= 1/(1 + e−xT
s θs) (5.7)

where xs ∈ R
918 are the image and depth features for the rectangular patch centered at

(û, v̂) in image Ĉ (described in Section 5.3.3). The parameter of this model θs ∈ R
918

is learned similarly.

Now to use a stereo camera in estimating the 3D grasping point, we use

P (yj = 1|Ci) = P (zi(u, v, w(u, v)) = 1|Ci) (5.8)

in Eq. 5.5 in place of Eq. 5.4 when Ci represents a stereo camera image with depth

information at (u, v).

This framework allows predictions from both regular and stereo cameras to be

used together seamlessly, and also allows predictions from stereo cameras to be useful

even when the stereo system failed to recover depth information at the predicted

grasp point.
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5.3.5 MAP inference

Given a set of images, we want to infer the most likely 3D location of the grasping

point. Therefore, we will choose the grid cell j in the 3D robot workspace that

maximizes the conditional log-likelihood logP (yj = 1|C1, ..., CN ) in Eq. 5.5. More

formally, let there be NC regular cameras and N − NC stereo cameras. Now, from

Eq. 5.4 and 5.8, we have:

arg maxj logP (yj = 1|C1, ..., CN)

= arg max
j

log
N
∏

i=1

P (yj = 1|Ci)

= arg max
j

NC
∑

i=1

log
(

1 − (1 − P (zi(u, v) = 1|Ci))
1/K
)

+
N
∑

i=NC+1

log (P (zi(u, v, w(u, v)) = 1|Ci)) (5.9)

where P (zi(u, v) = 1|Ci) is given by Eq. 5.1 and 5.2 and P (zi(u, v, w(u, v)) = 1|Ci) is

given by Eq. 5.6 and 5.7.

A straightforward implementation that explicitly computes the sum above for

every single grid-cell would give good grasping performance, but be extremely in-

efficient (over 110 seconds). Since there are only a few places in an image where

P (ẑi(u, v) = 1|Ci) is significantly greater than zero, we implemented a counting al-

gorithm that explicitly considers only grid-cells yj that are close to at least one ray

Ri(u, v). (Grid-cells that are more than 3σ distance away from all rays are highly

unlikely to be the grid-cell that maximizes the summation in Eq. 5.9.) This counting

algorithm efficiently accumulates the sums over the grid-cells by iterating over all N

images and rays Ri(u, v),
6 and results in an algorithm that identifies a 3D grasping

position in 1.2 sec.

6In practice, we found that restricting attention to rays where P (ẑi(u, v) = 1|Ci) > 0.1 allows us
to further reduce the number of rays to be considered, with no noticeable degradation in performance.
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5.4 Predicting orientation

In [141], we presented an algorithm for predicting the 3D orientation of an object

from its image. Here, for the sake of simplicity, we will present the learning algorithm

in the context of grasping using our 5-dof arm on STAIR 1.

As discussed in Section 5.6, our task is to predict the 2D wrist orientation θ of

the gripper (at the predicted grasping point) given the image. For example, given a

picture of a closed book (which we would like to grasp at its edge), we should choose

an orientation in which the robot’s two fingers are parallel to the book’s surfaces,

rather than perpendicular to the book’s cover.

Since our robotic arm has a parallel plate gripper comprising two fingers that

close in parallel, a rotation of π results in similar configuration of the gripper. This

results in a discontinuity at θ = π, in that the orientation of the gripper at θ = π is

equivalent to θ = 0. Therefore, to handle this symmetry, we will represent angles via

y(θ) = [cos(2θ), sin(2θ)] ∈ R
2. Thus, y(θ +Nπ) = [cos(2θ + 2Nπ), sin(2θ + 2Nπ)] =

y(θ).

Now, given images features x, we model the conditional distribution of y as a

multi-variate Gaussian:

P (y|x;w,K) = (2π)−n/2|K|1/2

exp

[

−
1

2
(y − wTx)TK(y − wTx)

]

where K−1 is a covariance matrix. The parameters of this model w and K are learnt

by maximizing the conditional log likelihood log
∏

i P (yi|xi;w).

Now when given a new image, our MAP estimate for y is given as follows. Since

||y||2 = 1, we will choose

y∗ = arg max
y:||y||2=1

logP (y|x;w,K) = arg max
y:||y||2=1

yTKq

for q = wTx. (This derivation assumed K = σ2I for some σ2, which will roughly hold

true if θ is chosen uniformly in the training set.) The closed form solution of this is

y = Kq/||Kq||2.
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In our robotic experiments, typically 30◦ accuracy is required to successfully grasp

an object, which our algorithm almost always attains. In an example, Figure 5.8 shows

the predicted orientation for a pen.

Figure 5.8: Predicted orientation at the grasping point for pen. Dotted line represents
the true orientation, and solid line represents the predicted orientation.

5.5 Robot platforms

Our experiments were performed on two robots built for the STAIR (STanford AI Robot)

project.7 Each robot has an arm and other equipment such as cameras, computers,

etc. (See Fig. 5.9 and 5.10.) The STAIR platforms were built as part of a project

whose long-term goal is to create a general purpose household robot that can navigate

in indoor environments, pick up and interact with objects and tools, and carry out

tasks such as tidy up a room or prepare simple meals. Our algorithms for grasping

novel objects represent perhaps a small step towards achieving some of these goals.

STAIR 1 uses a harmonic arm (Katana, by Neuronics), and is built on top of

a Segway robotic mobility platform. Its 5-dof arm is position-controlled and has a

parallel plate gripper. The arm has a positioning accuracy of ±1 mm, a reach of

62cm, and can support a payload of 500g. Our vision system used a low-quality

webcam (Logitech Quickcam Pro 4000) mounted near the end effector and a stereo

7See http://www.cs.stanford.edu/group/stair for details.
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camera (Bumblebee, by Point Grey Research). In addition, the robot has a laser

scanner (SICK LMS-291) mounted approximately 1m above the ground for navigation

purposes. (We used the webcam in the experiments on grasping novel objects, and the

Bumblebee stereo camera in the experiments on unloading items from dishwashers.)

STAIR 2 sits atop a holonomic mobile base, and its 7-dof arm (WAM, by Barrett

Technologies) can be position or torque-controlled, is equipped with a three-fingered

hand, and has a positioning accuracy of ±0.6 mm. It has a reach of 1m and can

support a payload of 3kg. Its vision system uses a stereo camera (Bumblebee2, by

Point Grey Research) and a Swissranger camera [170].

We used a distributed software framework called Switchyard [125] to route mes-

sages between different devices such as the robotic arms, cameras and computers.

Switchyard allows distributed computation using TCP message passing, and thus

provides networking and synchronization across multiple processes on different hard-

ware platforms. Now, we are using its second version called ROS [126].

5.6 Planning

After identifying a 3D point at which to grasp an object, we need to find an arm pose

that realizes the grasp, and then plan a path to reach that arm pose so as to pick up

the object.

Given a grasping point, there are typically many end-effector orientations consis-

tent with placing the center of the gripper at that point. The choice of end-effector

orientation should also take into account other constraints, such as location of nearby

obstacles, and orientation of the object.

5-dof arm. When planning in the absence of obstacles, we found that even fairly

simple methods for planning worked well. Specifically, on our 5-dof arm, one of the

degrees of freedom is the wrist rotation, which therefore does not affect planning

to avoid obstacles. Thus, we can separately consider planning an obstacle-free path

using the first 4-dof, and deciding the wrist rotation. To choose the wrist rotation,

using a simplified version of our algorithm in [141], we learned the 2D value of the 3D

grasp orientation projected onto the image plane (see Appendix). Thus, for example,
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Figure 5.9: STAIR 1 platform. This robot is equipped with a 5-dof arm and a parallel
plate gripper.
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Figure 5.10: STAIR 2 platform. This robot is equipped with 7-dof Barrett arm and
three-fingered hand.
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if the robot is grasping a long cylindrical object, it should rotate the wrist so that the

parallel-plate gripper’s inner surfaces are parallel (rather than perpendicular) to the

main axis of the cylinder. Further, we found that using simple heuristics to decide

the remaining degrees of freedom worked well.8

When grasping in the presence of obstacles, such as when unloading items from

a dishwasher, we used a full motion planning algorithm for the 5-dof as well as for

the opening of the gripper (a 6th degree of freedom). Specifically, having identified

possible goal positions in configuration space using standard inverse kinematics [85],

we plan a path in 6-dof configuration space that takes the end-effector from the

starting position to a goal position, avoiding obstacles. For computing the goal ori-

entation of the end-effector and the configuration of the fingers, we used a criterion

that attempts to minimize the opening of the hand without touching the object be-

ing grasped or other nearby obstacles. Our planner uses Probabilistic Road-Maps

(PRMs) [159], which start by randomly sampling points in the configuration space.

It then constructs a “road map” by finding collision-free paths between nearby points,

and finally finds a shortest path from the starting position to possible target positions

in this graph. We also experimented with a potential field planner [61], but found

the PRM method gave better results because it did not get stuck in local optima.

7-dof arm. On the STAIR 2 robot, which uses a 7-dof arm, we use the full algorithm

in [141], for predicting the 3D orientation of a grasp, given an image of an object.

This, along with our algorithm to predict the 3D grasping point, determines six of the

seven degrees of freedom (i.e., the end-effector location and orientation). For deciding

the seventh degree of freedom, we use a criterion that maximizes the distance of the

8Four degrees of freedom are already constrained by the end-effector 3D position and the chosen
wrist angle. To decide the fifth degree of freedom in uncluttered environments, we found that
most grasps reachable by our 5-dof arm fall in one of two classes: downward grasps and outward

grasps. These arise as a direct consequence of the shape of the workspace of our 5 dof robotic arm
(Figure 5.11). A “downward” grasp is used for objects that are close to the base of the arm, which
the arm will grasp by reaching in a downward direction (Figure 5.11, first image), and an “outward”
grasp is for objects further away from the base, for which the arm is unable to reach in a downward
direction (Figure 5.11, second image). In practice, to simplify planning we first plan a path towards
an approach position, which is set to be a fixed distance away from the predicted grasp point towards
the base of the robot arm. Then we move the end-effector in a straight line forward towards the
target grasping point. Our grasping experiments in uncluttered environments (Section 5.7.2) were
performed using this heuristic.
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arm from the obstacles. Similar to the planning on the 5-dof arm, we then apply a

PRM planner to plan a path in the 7-dof configuration space.

5.7 Experiments

Table 5.1: Mean absolute error in locating the grasping point for different objects,
as well as grasp success rate for picking up the different objects using our robotic
arm. (Although training was done on synthetic images, testing was done on the real
robotic arm and real objects.)

Objects Similar to Ones Trained on
Tested on Mean Abs Grasp-

Error Success
(cm) rate

Mugs 2.4 75%
Pens 0.9 100%
Wine Glass 1.2 100%
Books 2.9 75%
Eraser/Cellphone 1.6 100%
Overall 1.80 90.0%

Novel Objects
Tested on Mean Abs Grasp-

Error Success
(cm) rate

Stapler 1.9 90%
Duct Tape 1.8 100%
Keys 1.0 100%
Markers/Screwdriver 1.1 100%
Toothbrush/Cutter 1.1 100%
Jug 1.7 75%
Translucent Box 3.1 75%
Powerhorn 3.6 50%
Coiled Wire 1.4 100%
Overall 1.86 87.8%
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Figure 5.11: The robotic arm picking up various objects: screwdriver, box, tape-roll,
wine glass, a solder tool holder, coffee pot, powerhorn, cellphone, book, stapler and
coffee mug. (See Section 5.7.2.)
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5.7.1 Experiment 1: Synthetic data

We first evaluated the predictive accuracy of the algorithm on synthetic images (not

contained in the training set). (See Figure 5.6e.) The average accuracy for classifying

whether a 2D image patch is a projection of a grasping point was 94.2% (evaluated

on a balanced test set comprised of the five objects in Figure 5.3). Even though the

accuracy in classifying 2D regions as grasping points was only 94.2%, the accuracy

in predicting 3D grasping points was higher because the probabilistic model for in-

ferring a 3D grasping point automatically aggregates data from multiple images, and

therefore “fixes” some of the errors from individual classifiers.

5.7.2 Experiment 2: Grasping novel objects

We tested our algorithm on STAIR 1 (5-dof robotic arm, with a parallel plate gripper)

on the task of picking up an object placed on an uncluttered table top in front of the

robot. The location of the object was chosen randomly (and we used cardboard boxes

to change the height of the object, see Figure 5.11), and was completely unknown to

the robot. The orientation of the object was also chosen randomly from the set of

orientations in which the object would be stable, e.g., a wine glass could be placed

vertically up, vertically down, or in a random 2D orientation on the table surface

(see Figure 5.11). (Since the training was performed on synthetic images of objects

of different types, none of these scenarios were in the training set.)

In these experiments, we used a web-camera, mounted on the wrist of the robot,

to take images from two or more locations. Recall that the parameters of the vision

algorithm were trained from synthetic images of a small set of five object classes,

namely books, martini glasses, white-board erasers, mugs/cups, and pencils. We

performed experiments on coffee mugs, wine glasses (empty or partially filled with

water), pencils, books, and erasers—but all of different dimensions and appearance

than the ones in the training set—as well as a large set of objects from novel object

classes, such as rolls of duct tape, markers, a translucent box, jugs, knife-cutters,

cellphones, pens, keys, screwdrivers, staplers, toothbrushes, a thick coil of wire, a

strangely shaped power horn, etc. (See Figures 5.2 and 5.11.) We note that many of
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these objects are translucent, textureless, and/or reflective, making 3D reconstruction

difficult for standard stereo systems. (Indeed, a carefully-calibrated Point Gray stereo

system, the Bumblebee BB-COL-20,—with higher quality cameras than our web-

camera—fails to accurately reconstruct the visible portions of 9 out of 12 objects.

See Figure 5.5.)

In extensive experiments, the algorithm for predicting grasps in images appeared

to generalize very well. Despite being tested on images of real (rather than synthetic)

objects, including many very different from ones in the training set, it was usually

able to identify correct grasp points. We note that test set error (in terms of average

absolute error in the predicted position of the grasp point) on the real images was only

somewhat higher than the error on synthetic images; this shows that the algorithm

trained on synthetic images transfers well to real images. (Over all 5 object types used

in the synthetic data, average absolute error was 0.81cm in the synthetic images; and

over all the 14 real test objects, average error was 1.84cm.) For comparison, neonate

humans can grasp simple objects with an average accuracy of 1.5cm. [11]

Table 5.1 shows the errors in the predicted grasping points on the test set. The

table presents results separately for objects which were similar to those we trained on

(e.g., coffee mugs) and those which were very dissimilar to the training objects (e.g.,

duct tape). For each entry in the table, a total of four trials were conducted except

for staplers, for which ten trials were conducted. In addition to reporting errors in

grasp positions, we also report the grasp success rate, i.e., the fraction of times the

robotic arm was able to physically pick up the object. For a grasp to be counted as

successful, the robot had to grasp the object, lift it up by about 1ft, and hold it for

30 seconds. On average, the robot picked up the novel objects 87.8% of the time.

For simple objects such as cellphones, wine glasses, keys, toothbrushes, etc., the

algorithm performed perfectly in our experiments (100% grasp success rate). How-

ever, grasping objects such as mugs or jugs (by the handle) allows only a narrow

trajectory of approach—where one “finger” is inserted into the handle—so that even

a small error in the grasping point identification causes the arm to hit and move the

object, resulting in a failed grasp attempt. Although it may be possible to improve

the algorithm’s accuracy, we believe that these problems can best be solved by using
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a more advanced robotic arm that is capable of haptic (touch) feedback.

In many instances, the algorithm was able to pick up completely novel objects

(a strangely shaped power-horn, duct-tape, solder tool holder, etc.; see Figures 5.2

and 5.11). Perceiving a transparent wine glass is a difficult problem for standard

vision (e.g., stereopsis) algorithms because of reflections, etc. However, as shown in

Table 5.1, our algorithm successfully picked it up 100% of the time. Videos showing

the robot grasping the objects are available at

http://ai.stanford.edu/∼asaxena/learninggrasp/

5.7.3 Experiment 3: Unloading items from dishwashers

The goal of the STAIR project is to build a general purpose household robot. As

a step towards one of STAIR’s envisioned applications, in this experiment we con-

sidered the task of unloading items from dishwashers (Figures 5.1 and 5.14). This

is a difficult problem because of the presence of background clutter and occlusion

between objects—one object that we are trying to unload may physically block our

view of a second object. Our training set for these experiments also included some

hand-labeled real examples of dishwasher images (Figure 5.12), including some im-

ages containing occluded objects; this helps prevent the algorithm from identifying

grasping points on the background clutter such as dishwasher prongs. Along with the

usual features, these experiments also used the depth-based features computed from

the depth image obtained from the stereo camera (Section 5.3.3). Further, in these

experiments we did not use color information, i.e., the images fed to the algorithm

were grayscale.

In detail, we asked a person to arrange several objects neatly (meaning inserted

over or between the dishwasher prongs, and with no pair of objects lying flush against

each other; Figures 10 and 11 show typical examples) in the upper tray of the dish-

washer. To unload the items from the dishwasher, the robot first identifies grasping

points in the image. Figure 5.13 shows our algorithm correctly identifying grasps on

multiple objects even in the presence of clutter and occlusion. The robot then uses



128 CHAPTER 5. ROBOTIC GRASPING: IDENTIFYING GRASP-POINT

Figure 5.12: Example of a real dishwasher image, used for training in the dishwasher
experiments.

these grasps and the locations of the obstacles (perceived using a stereo camera) to

plan a path while avoiding obstacles, to pick up the object. When planning a path

to a grasping point, the robot chooses the grasping point that is most accessible to

the robotic arm using a criterion based on the grasping point’s height, distance to

the robot arm, and distance from obstacles. The robotic arm then removes the first

object (Figure 5.14) by lifting it up by about 1ft and placing it on a surface on its

right using a pre-written script, and repeats the process above to unload the next

Table 5.2: Grasp-success rate for unloading items from a dishwasher.

Tested on Grasp-Success-rate
Plates 100%
Bowls 80%
Mugs 60%
Wine Glass 80%
Overall 80%
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Figure 5.13: Grasping point detection for objects in a dishwasher. (Only the points
in top five grasping regions are shown.)
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item. As objects are removed, the visual scene also changes, and the algorithm will

find grasping points on objects that it had missed earlier.

We evaluated the algorithm quantitatively for four object classes: plates, bowls,

mugs and wine glasses. (We have successfully unloaded items from multiple dish-

washers; however we performed quantitative experiments only on one dishwasher.)

We performed five trials for each object class (each trial used a different object). We

achieved an average grasping success rate of 80.0% in a total of 20 trials (see Ta-

ble 5.2). Our algorithm was able to successfully pick up objects such as plates and

wine glasses most of the time. However, due to the physical limitations of the 5-dof

arm with a parallel plate gripper, it is not possible for the arm to pick up certain

objects, such as bowls, if they are in certain configurations (see Figure 5.15). For

mugs, the grasp success rate was low because of the problem of narrow trajectories

discussed in Section 5.7.2.

We also performed tests using silverware, specifically objects such as spoons and

forks. These objects were often placed (by the human dishwasher loader) against the

corners or walls of the silverware rack. The handles of spoons and forks are only

about 0.5cm thick; therefore a larger clearance than 0.5cm was needed for them to

be grasped using our parallel plate gripper, making it physically extremely difficult

to do so. However, if we arrange the spoons and forks with part of the spoon or fork

at least 2cm away from the walls of the silverware rack, then we achieve a grasping

success rate of about 75%.

Some of the failures were because some parts of the object were not perceived;

therefore the arm would hit and move the object resulting in a failed grasp. In such

cases, we believe an algorithm that uses haptic (touch) feedback would significantly

increase grasp success rate. Some of our failures were also in cases where our algorithm

correctly predicts a grasping point, but the arm was physically unable to reach that

grasp. Therefore, we believe that using an arm/hand with more degrees of freedom,

will significantly improve performance for the problem of unloading a dishwasher.
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Figure 5.14: Dishwasher experiments (Section 5.7.3): Our robotic arm unloads items
from a dishwasher.
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Figure 5.15: Dishwasher experiments: Failure case. For some configurations of certain
objects, it is impossible for our 5-dof robotic arm to grasp it (even if a human were
controlling the arm).
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5.7.4 Experiment 4: Grasping kitchen and office objects

Our long-term goal is to create a useful household robot that can perform many

different tasks, such as fetching an object in response to a verbal request and cooking

simple kitchen meals. In situations such as these, the robot would know which object

it has to pick up. For example, if the robot was asked to fetch a stapler from an

office, then it would know that it needs to identify grasping points for staplers only.

Therefore, in this experiment we study how we can use information about object type

and location to improve the performance of the grasping algorithm.

Consider objects lying against a cluttered background such as a kitchen or an

office. If we predict the grasping points using our algorithm trained on a dataset

containing all five objects, then we typically obtain a set of reasonable grasping point

predictions (Figure 5.16, left column). Now suppose we know the type of object we

want to grasp, as well as its approximate location in the scene (such as from an

object recognition algorithm [39]). We can then restrict our attention to the area of

the image containing the object, and apply a version of the algorithm that has been

trained using only objects of a similar type (i.e., using object-type specific parameters,

such as using bowl-specific parameters when picking up a cereal bowl, using spoon-

specific parameters when picking up a spoon, etc). With this method, we obtain

object-specific grasps, as shown in Figure 5.16 (right column).

Achieving larger goals, such as cooking simple kitchen meals, requires that we

combine different algorithms such as object recognition, navigation, robot manipula-

tion, etc. These results demonstrate how our approach could be used in conjunction

with other complementary algorithms to accomplish these goals.

5.8 Discussion

We proposed an algorithm for enabling a robot to grasp an object that it has never

seen before. Our learning algorithm neither tries to build, nor requires, a 3D model

of the object. Instead it predicts, directly as a function of the images, a point at

which to grasp the object. In our experiments, the algorithm generalizes very well to



134 CHAPTER 5. ROBOTIC GRASPING: IDENTIFYING GRASP-POINT

Kitchen

Office

Figure 5.16: Grasping point classification in kitchen and office scenarios: (Left Col-
umn) Top five grasps predicted by the grasp classifier alone. (Right Column) Top two
grasps for three different object-types, predicted by the grasp classifier when given
the object types and locations. The red points in each image are the predicted grasp
locations. (Best viewed in color.)
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novel objects and environments, and our robot successfully grasped a wide variety of

objects in different environments such as dishwashers, office and kitchen.



Chapter 6

Robotic Grasping: Full Hand

Configuration

6.1 Introduction

Consider the problem of grasping novel objects, in the presence of significant amounts

of clutter. A key challenge in this setting is that a full 3D model of the scene is

typically not available. Instead, a robot’s sensors (such as a camera or a depth

sensor) can usually estimate only the shape of the visible portions of the scene. In

this chapter, we present an algorithm that, given such partial models of the scene,

selects a grasp—that is, a configuration of the robot’s arm and fingers—to try to pick

up an object.

Our algorithm in chapter 5 applied supervised learning to identify visual properties

that indicate good grasps, given a 2-d image of the scene. However, it only chose a

3D “grasp point”—that is, the 3D position (and 3D orientation; Saxena et al. [139])

of the center of the end-effector. Thus, it did not generalize well to more complex

arms and hands, such as to multi-fingered hands where one has to not only choose

the 3D position (and orientation) of the hand, but also address the high dof problem

of choosing the positions of all the fingers.

If a full 3D model (including the occluded portions of a scene) were available,

then methods such as form- and force-closure [86, 7, 116] and other grasp quality

136
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metrics [107, 48, 18] can be used to try to find a good grasp. However, given only

the point cloud returned by stereo vision or other depth sensors, a straightforward

application of these ideas is impossible, since we do not have a model of the occluded

portions of the scene.

In prior work that used vision for real-world grasping experiments, most were

limited to grasping 2-d planar objects. For a uniformly colored planar object lying on

a uniformly colored table top, one can find the 2-d contour of the object quite reliably.

Using local visual features (based on the 2-d contour) and other properties such as

form- and force-closure, [19, 17, 12, 93] computed the 2-d locations at which to place

(two or three) fingertips to grasp the object. In more general settings (i.e., non-planar

grasps), Edsinger and Kemp ([28]) grasped cylindrical objects using a power grasp

by using visual servoing and Platt et al. ([115]) used schema structured learning for

grasping simple objects (spherical and cylindrical) using power grasps; however, this

does not apply to grasping general shapes (e.g., a cup by its handle) or to grasping

in cluttered environments.

In detail, we will consider a robot that uses a camera, together with a depth

sensor, to perceive a scene. The depth sensor returns a “point cloud,” corresponding

to 3D locations that it has found on the front unoccluded surfaces of the objects.

(See Fig. 6.1.) Such point clouds are typically noisy (because of small errors in the

depth estimates); but more importantly, they are also incomplete.1

Our approach begins by computing a number of features of grasp quality, using

both 2-d image and the 3D point cloud features. For example, the 3D data is used to

compute a number of grasp quality metrics, such as the degree to which the fingers

are exerting forces normal to the surfaces of the object, and the degree to which

they enclose the object. Using such features, we then apply a supervised learning

algorithm to estimate the degree to which different configurations of the full arm and

fingers reflect good grasps.

Our grasp planning algorithm that relied on long range vision sensors (such as

cameras, swissranger), errors and uncertainty ranging from small deviations in the

1For example, standard stereo vision fails to return depth values for textureless portions of the
object, thus its point clouds are typically very sparse. Further, the Swissranger gives few points only
because of its low spatial resolution of 144 × 176.
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Figure 6.1: Image of an environment (left) and the 3D point-cloud (right) returned
by the Swissranger depth sensor.

object’s location to occluded surfaces significantly limited the reliability of these open-

loop grasping strategies. (We found that approximately 65% of the grasp failures were

because we used only long range sensors and lacked a reactive controller with sufficient

local surface pose information. ) Therefore, we also present new optical proximity

sensors mounted on robot hand’s fingertips and learning algorithms to enable the

robot to reactively adjust the grasp. These sensors are a very useful complement

to long-range sensors (such as vision and 3D cameras), and provide a sense of “pre-

touch” to the robot, thus helping in the grasping performance.

We test our algorithm on two robots, on a variety of objects of shapes very different

from ones in the training set, including a ski boot, a coil of wire, a game controller,

and others. Even when the objects are placed amidst significant clutter, our algorithm

often selects successful grasps.

We present an additional application of our algorithms to opening new doors.

This capability enables our robot to navigate in spaces that were earlier blocked by

doors and elevators.

This chapter is organized as follows. We first give a brief overview of the 3D

sensor used in Section 6.2. We then describe our method for grasping using this 3D

data in Section 6.3. We describe our experiments and results in Section 6.4. We then

describe the optical proximity sensors in Section 6.5. Finally, we describe the door
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Figure 6.2: (Left) Barrett 3-fingered hand. (Right) Katana parallel plate gripper.

opening application in Section 6.6.

6.2 3D sensor

The SwissRanger camera is a time-of-flight depth sensor that returns a 144 × 176

array of depth estimates, spanning a 47.5◦×39.6◦ field of view, with a range of about

8m. Using an infrared structured light source, each pixel in the camera independently

measures the arrival time of the light reflected back by the objects. Its depth estimates

are typically accurate to about 2cm. However, it also suffers from systematic errors,

in that it tends not to return depth estimates for dark objects, nor for surfaces lying

at a large angle relative to the camera’s image plane. (See Fig. 6.1 for a sample 3D

scan.)

6.3 Grasping Strategy

There are many different properties that make certain grasps preferable to others.

Examples of such properties include form- and force-closure (to minimize slippage),

sufficient contact with the object, distance to obstacles (to increase robustness of

the grasp), and distance between the center of the object and the grasping point
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(to increase stability). In real world grasping, however, such properties are difficult

to compute exactly, because of the quality of sensor data. Our algorithm will first

compute a variety of features that attempt to capture some of these properties. Using

these features, we then apply supervised learning to predict whether or not a given

arm/finger configuration reflects a good grasp.

Definition of grasp: We will infer the full goal configuration of the arm/fingers that

is required to grasp an object. For example, STAIR 1 uses an arm with 5 joints and

a parallel plate gripper (with one degree of freedom); for this robot, the configuration

is given by α ∈ R
6. The second robot STAIR 2 uses an arm with 7 joints, equipped

with a three-fingered hand that has 4 joints (Fig. 6.2); for this robot, our algorithm

infers a configuration α ∈ R
11. We will informally refer to this goal configuration as

a “grasp.”

We will then use a motion planner algorithm [159] to plan a path (one that avoids

obstacles) from the initial configuration to this goal configuration.

6.3.1 Probabilistic model

We will use both the point-cloud R and the image I taken of a scene to infer a goal

configuration α of the arm/fingers.

In chapter 5, we classified each 2-d point in a given image as a 1 (candidate grasp)

or 0. For example, for an image of a mug, it would try to classify the handle and

rim as candidate grasping points. In our approach, we use a similar classifier that

computes a set of image features and predicts the probability P (y = 1|α, I) ∈ [0, 1]

of each point in the image being a candidate grasping point. However, a remaining

difficulty is that this algorithm does not take into account the arm/finger kinematics;

thus, many of the 2-d points it selects are physically impossible for the robot to reach.

To address this problem, we use a second classifier that, given a configuration α

and a point-cloud R, predicts the probability P (y|α,R) that the grasp will succeed.

This classifier will compute features that capture a variety of properties that are

indicative of grasp quality. Our model will combine these two classifiers to estimate

the probability P (y|α,R, I) of a grasp α succeeding. Let y ∈ {0, 1} indicate whether
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{α,R, I} is a good grasp. We then have:

P (y|α,R, I) ∝ P (R, I|y, α)P (y, α) (6.1)

We assume conditional independence of R and I, and uniform priors P (α), P (I),

P (R) and P (y). Hence,

P (y|α,R, I) ∝ P (R|y, α)P (I|y, α)P (y, α)

∝ P (y|α,R)P (y|α, I) (6.2)

Here, the P (y|α, I) is the 2-d image classifier term similar to the one in chapter 5.

We also use P (y|α,R; θ) = 1/ exp
(

1 + ψ(R,α)T θ
)

, where ψ(R,α) are the features

discussed in the next section.

Inference: From Eq. 6.2, the inference problem is:

α∗ = arg max
α

logP (y = 1|α,R, I)

= arg max
α

logP (y = 1|α,R) + logP (y = 1|α, I)

Now, we note that a configuration α has a very small chance of being the optimal

configuration if either one of the two terms is very small. Thus, for efficiency, we

implemented an image-based classifier P (y|I, α) that returns only a small set of 3D

points with a high value. We use this to restrict the set of configurations α to

only those in which the hand-center lies on one of the 3D location output by the

image-based classifier. Given one such 3D location, finding a full configuration α

for it now requires solving only an n − 3 dimensional problem (where n = 6 or 11,

depending on the arm). Further, we found that it was sufficient to consider only

a few locations of the fingers, which further reduces the search space; e.g., in the

goal configuration, the gap between the finger and the object is unlikely to be larger

than a certain value. By sampling randomly from this space of “likely” configurations

(similar to sampling in PRMs) and evaluating the grasp quality only of these samples,

we obtain an inference algorithm that is computationally tractable and that also
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typically obtains good grasps.

Algorithm 1 Grasping an Object

1: Get a set of candidate 2-d grasp points in the image using a classifier based on
[137]

2: Use depth sensors (stereo/swissranger) to find corresponding 3D grasp point
3: for Each grasp point in candidate 3D grasp points set do
4: Use arm inverse kinematics to generate configuration(s) with hand center near

the 3D grasp point
5: Add configurations(s) for which arm/finger does not hit obstacles to the can-

didate valid configuration set
6: end for
7: for Each configuration in candidate valid configuration set do
8: Compute features using the point-cloud and the configuration
9: Use features to classify if grasp will be good/bad

10: Score[grasp] ⇐ ScoreForCandidateGrasp (from classifier)
11: end for
12: Execute grasp∗ = arg maxScore[grasp]
13: Plan path for grasp∗ using PRM motion planner

6.3.2 Features

Below, we describe the features that make up the feature vector ψ(R,α) used to

estimate a good grasp. The same features were used for both robots.

Presence / Contact: For a given finger configuration, some part of an object

should be inside the volume enclosed by the fingers. Intuitively, more enclosed points

indicate that the grasp contains larger parts of the object, which generally decreases

the difficulty of grasping it (less likely to miss). For example, for a coil of wire, it

is better to grasp a bundle rather than a single wire. To robustly capture this, we

calculate a number of features—the number of points contained in spheres of different

sizes located at the hand’s center, and also the number of points located inside the

volume enclosed within the finger-tips and the palm of the hand.

Symmetry / Center of Mass: Even if many points are enclosed by the hand, their

distribution is also important. For example, a stick should be grasped at the middle

instead of at the tip, as slippage might occur in the latter case due to a greater torque
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(a) (b)

Figure 6.3: Features for symmetry / evenness.

induced by gravity. To capture this property, we calculate a number of features based

on the distribution of points around the hand’s center along an axis perpendicular to

the line joining the fingers. To ensure grasp stability, an even distribution (1:1 ratio)

of points on both sides of the axis is desirable. More formally, if there are N points

on one side and N ′ on the other side, then our feature would be |N −N ′|/(N +N ′).

Again, to increase robustness, we use several counting methods, such as counting all

the points, and counting only those points not enclosed by the hand.

Local Planarity / Force-Closure: One needs to ensure a few properties to avoid

slippage, such as a force closure on the object (e.g., to pick up a long tube, a grasp

that lines up the fingers along the major axis of the tube would likely fail). Further,

a grasp in which the finger direction (i.e., direction in which the finger closes) is

perpendicular to the local tangent plane is more desirable, because it is more likely to

lie within the friction cone, and hence is less likely to slip. For example, when grasping

a plate, it is more desirable that the fingers close in a direction perpendicular to the

plate surface.

To capture such properties, we start with calculating the principal directions of

a 3D point cloud centered at the point in question. This gives three orthonormal

component directions ui, with u1 being the component with largest variance, followed

by u2 and u3. (Let σi be the corresponding variances.) For a point on the rim of a
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Figure 6.4: Demonstration of PCA features.

circular plate, u1 and u2 would lie in the plane in which the plate lies, with u1 usually

tangent to the edge, and u2 facing inwards. Ideally, the finger direction should be

orthogonal to large variance directions and parallel to the small variance ones. For fj

as the finger direction (j = 1 for parallel gripper, and j = 1, 2 for three-fingered hand),

we would calculate the following features: (a) Directional similarity, sij = |ui · fj|,

and (b) Difference from ideal, ( σ1−σi

σ1−σ3

− sij)
2.

6.4 Experiments

We performed three sets of extensive experiments: grasping with our three-fingered

7-dof arm in uncluttered as well as cluttered environments, and on our 5-dof arm

with a parallel plate gripper for unloading items in a cluttered dishwasher.

6.4.1 Grasping single novel objects

We considered several objects from 13 novel object classes in a total of 150 experi-

ments. These object classes varied greatly in shape, size, and appearance, and are

very different from the plates, bowls, and rectangular blocks used in the training set.

During the experiments, objects were placed at a random location in front of our

robot. Table 6.1 shows the results: “Prediction” refers to the percentage of cases

the final grasp and plan were good, and “Grasp success” is the percentage of cases

in which the robot predicted a good grasp and actually picked up the object as well



6.4. EXPERIMENTS 145

Figure 6.5: Snapshots of our robot grasping novel objects of various sizes/shapes.

(i.e., if the object slipped and was not picked up, then it counted as failure).

In 5, we required that objects be neatly placed on a “rack.” However, we consider

the significantly harder task of grasping randomly placed objects in any orientation.

Further, many objects such as ski boots, helmets, etc. require more intricate grasps

(such as inserting a finger in the ski boot because it is too big to hold as a power

grasp).

For each object class, we performed 10-20 trials, with different instances of each

object for each class (e.g., different plates for “plates” class). The average “Predic-

tion” accuracy was 81.3%; and the actual grasp success rate was 76%. The success

rate was different depending on the size of the object.2 Both prediction and actual

grasping were best for medium sizes, with success rates of 92% and 86% respectively.

Even though handicapped with a significantly harder experimental trial (i.e., objects

2We defined an object to be small if it could be enclosed within the robot hand, medium if it
was approximately 1.5-3 times the size of the hand, and large otherwise (some objects were even 4ft
long).
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Table 6.1: STAIR 2. Grasping single objects. (150 trials.)

Object Class Size Prediction Grasp success
Ball small 80% 80%
Apple small 90% 80%
Gamepad small 85% 80%
CD container small 70% 60%
Helmet med 100% 100%
Ski boot med 80% 80%
Plate bundle med 100% 80%
Box med 90% 90%
Robot arm link med 90% 80%
Cardboard tube large 70% 65%
Foam large 60% 60%
Styrofoam large 80% 70%
Coil of wire large 70% 70%

not neatly stacked, but thrown in random places and a larger variation of object

sizes/shapes considered) as compared to Saxena et al., our algorithm surpasses their

success rate by 6%.

6.4.2 Grasping in cluttered scenarios

In this case, in addition to the difficulty in perception, manipulation and planning

became significantly harder in that the arm had to avoid all other objects while

reaching for the predicted grasp; this significantly reduced the number of feasible

candidates and increased the difficulty of the task.

In each trial, more than five objects were placed in random locations (even where

objects touched each other, see some examples in Fig. 6.5). Using only the 2-d image-

based method of Saxena et al. (with PRM motion planning), but not our algorithm

that considers finding all arm/finger joints from partial 3D data, success was below

5%. In a total of 40 experiments, our success rate was 75% (see Table 6.2). We

believe our robot is the first one to be able to automatically grasp objects, of types

never seen before, placed randomly in such heavily cluttered environments.
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Figure 6.6: Barrett arm grasping an object using our algorithm.
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Table 6.2: STAIR 2. Grasping in cluttered scenes. (40 trials.)

Environment Object Prediction Grasp Success
Terrain Tube 87.5% 75%
Terrain Rock 100% 75%
Kitchen Plate 87.5% 75%
Kitchen Bowl 75% 75%

Table 6.3: STAIR 1. Dishwasher unloading results. (50 trials.)

Object Class Prediction Good Actual Success
Plate 100% 85%
Bowl 80% 75%
Mug 80% 60%

We have made our grasping movies available at:

http://stair.stanford.edu/multimedia.php

6.5 Optical proximity sensors

In our grasp planning algorithm that relied on long range vision sensors (such as

cameras, swissranger), errors and uncertainty ranging from small deviations in the

object’s location to occluded surfaces significantly limited the reliability of these open-

loop grasping strategies. We found that approximately 65% of the grasp failures were

because we used only long range sensors and lacked a reactive controller with sufficient

local surface pose information.

Tactile sensing has been employed as a means to augment the initial grasp and

manipulation strategies by addressing inconsistencies in the contact forces during ob-

ject contact and manipulation [173]. However, tactile sensors have to actually touch

the object in order to provide useful information. Because current sensor technologies

are not sensitive enough to detect finger contacts before causing significant object mo-

tion, their use is limited to either minor adjustments of contact forces at pre-computed
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Figure 6.7: Three-fingered Barrett Hand with our optical proximity sensors mounted
on the finger tips.

grasp configurations, or to planning algorithms that require iterative re-grasping of

the object in order to grasp successfully [109, 172, 50]. While the latter approach has

shown substantial improvements in grasp reliability, it requires a significant amount

of time and frequently causes lighter objects to be knocked over during the repeated

grasp attempts.

The limitations of tactile-sensing-augmented grasp planning can be overcome by

‘pre-touch’ sensing. This modality has recently become a popular means of bridging

the gap in performance between long range vision and tactile sensors. In pre-touch

sensing, gripper-mounted, short-range (0-4cm) proximity sensors are used to estimate

the absolute distance and orientation (collectively called surface pose) of a desired

contact location without requiring the robot to touch the object [163]. The vast ma-

jority of these pre-touch proximity sensors use optical methods because of their high

precision [10, 106, 179, 111, 112]. Optical sensors, however, are highly sensitive to

surface reflection properties. Alternatively, capacitive-based proximity sensors have

also been used [183]. While invariant to surface properties, these capacitive-based
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sensors have difficulty detecting materials with low dielectric contrast, such as fab-

rics and thin plastics. Unfortunately, in both cases, present sensor calibration and

modeling techniques have yet to produce pose estimates that are robust enough to be

useful across the range of surface textures, materials, and geometries encountered in

unstructured environments. Furthermore, the finger tips of typical robotic grippers

are too small to accommodate the sensors used in previous work.

Therefore, in [51] we developed an optical proximity sensor, embedded in the

fingers of the robot (see Fig. 6.7), and show how it can be used to estimate local

object geometries and perform better reactive grasps. This allows for on-line grasp

adjustments to an initial grasp configuration without the need for premature object

contact or re-grasping strategies. Specifically, a design for a low cost, pose-estimating

proximity sensor is presented that meets the small form factor constraints of a typical

robotic gripper.

The data from these sensors is interpreted using empirically derived models and

the resulting pose estimates are provided to a reactive grasp closure controller that

regulates contact distances even in the absence of reliable surface estimates. This

allows the robot to move the finger tip sensors safely into configurations where sensor

data for the belief-state update can be gathered. Simultaneously, the pose estimates

of the sensor interpretation approach can provide the necessary information to adjust

the grasp configuration to match the orientation of the object surface, increasing the

likelihood of a stable grasp.

We perform a series of grasping experiments to validate the system using a dex-

terous robot consisting of a 7-DOF Barrett arm and multi-fingered hand. In these

tests, we assume that an approximate location of the object to be grasped has al-

ready been determined either from long range vision sensors [136], or through human

interaction [60]. From the initial grasp positions, the system exhibits improved grasp-

ing on a variety of household objects with varying materials, surface properties, and

geometries.
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Figure 6.8: Normalized Voltage Output vs. Distance for a TCND5000 emitter-
detector pair.

6.5.1 Optical Sensor Hardware

The purpose of the optical sensor hardware is to provide data that can be used by

the modeling algorithm to construct pose estimates of nearby surfaces. The design

is driven by a series of constraints, including size, sensor response, and field of view.

The hardware design was mostly due to Paul Nangeroni [51]; however, we provide the

full design details for completeness.

A basic optical sensor consists of an emitter, photo-receiver, and signal processing

circuitry. The light from the emitter is reflected by nearby surfaces and received by

the photo-receiver. The amplitude and phase of the light vary as a function of the

distance to the surface, its orientation, and other properties of the surface material

(reflectance, texture, etc.) [10]. In amplitude-modulated proximity sensor design, the

most commonly preferred method, these variations in amplitude can be converted
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Figure 6.9: Possible fingertip sensor configurations.

into pose estimates by measuring the response from constellations of at least three

receivers focused at the same point on the target surface [10, 127, 179].

Although conceptually simple, modeling the pose of unknown surfaces is difficult

because of the non-monotonic behavior of the proximity sensor receivers. The re-

sponse of a single sensor is a function of the distance to the target surface and the

baseline between the emitter and receiver, as shown in Fig. 6.8. While the response

in the far-field varies as the inverse square of the distance [105], the response of the

sensor in the near field is far more complex. The decrease in received light energy in

the near field is governed not only by the reflective properties of the surface, but also

by the geometric baseline between the emitter and receiver. As distance approaches
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zero in the near field, the amount of energy that can be reflected between the emitter

and receiver decreases because the overlap between the emitter and receiver cones

decreases. This results in a sharp drop-off of received light intensity. To avoid com-

plications in modeling the sensor data, most approaches, including ours, offset the

sensors from the surface of the gripper to maximize the far field sensor response. Al-

though this sacrifices the higher sensitivity of the near field, the longer range of the

far field is better suited to grasping applications [10].

The selection of specific sensor hardware and signal processing electronics is severely

constrained by the limited space in typical robotic fingers (for instance, our Barrett

fingers have a 1cm x 2cm x 1cm cavity volume). Bonen and Walker used optical

fibers to achieve the desired geometric arrangement of emitters and receivers in their

respective sensors. However, the bend radius and large terminations of the fibers vi-

olate the space constraints in this application. Instead, our design uses four low-cost,

off-the-shelf infrared emitter/receiver pairs (Vishay TCND50000) on each finger. The

small size (6 x 3.7 x 3.7 mm) meets the volume requirements of the design and the

range (2-40mm) is ideal for pre-touch sensing.

The arrangement of these sensors represents yet another design tradeoff between

field of view and pose estimation accuracy. Large fields of view, both out from and

in front of the face of the fingertip, as shown in Fig. 6.9a, are advantageous for

detecting oncoming objects. Unfortunately, the sensor spacing needed to achieve this

reduces the overlap between adjacent sensor pairs and lowers the signal to noise ratio.

Conversely, arranging the sensors to focus the emitters and maximize crosstalk, as

shown in Fig. 6.9b, improves local pose estimation accuracy at the expense of broader

range data to nearby objects. The final configuration, shown in Fig. 6.9c, consists of

three sensors arranged in a triangle on the face of the finger to estimate pose with a

fourth sensor at a 45◦ angle to the finger tip to increase the field of view. Although

surface area exists for placing additional sensors, the quantity is limited to four by

the available space in the Barrett finger cavity for pre-amplifier circuitry. The sensors

are inset into the finger to minimize near-field effects, and the aluminum housing

is matte anodized to decrease internal specular reflection. The crosstalk between
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Figure 6.10: Front view of sensor constellation. Hatches show the crosstalk between
adjacent sensor pairs.

adjacent sensors is illustrated by the hatched area in Fig. 6.10.3

The complete proximity sensing suite consists of twelve total emitter-detector

pairs, four on each finger. The emitters are pulsed in sequence by a PIC 18F4550

micro-controller located on the wrist of the robot (as shown in Fig. 6.7) so that 16

readings are generated for each finger on each cycle. The collected sensor data is pre-

amplified by circuitry in the finger tip and then sampled by a 10-bit A/D converter

before streaming the data back to the robot over a serial link. In spite of the 950nm

operating frequency, raw sensor readings remain sensitive to ambient light effects.

Background subtraction was used to remove this ambient component and increase

the signal to noise ratio.

3While the crosstalk between sensors 1-3 can be useful when the primary sensor values saturate,
which occurs on many light-colored surfaces, experimental testing showed the crosstalk to be below
the noise floor on many of the object surfaces we encountered. Since this work assumes that the
nature of the surface is unknown a priori, our current work ignores the crosstalk and only uses the
primary sensor values.
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6.5.2 Sensor model

Given a series of observations from the sensors on each finger, our goal is to estimate

the surface pose (distance and orientation) of the surface in front of the finger.

More formally, let o = (o1, o2, o3) ∈ R
3 be the readings from the three sensors

grouped in a triangle,4 and s = (d, xrot, zrot) be the surface pose of the local surface

(approximated as a plane). Here, d is the straight-line distance from the center of the

three sensors to the surface of the object (along the vector pointing outwards from

the finger surface) sensors. xrot and zrot are the relative orientations of the surface

around the finger’s x-axis (pitch) and z-axis (roll) respectively, as shown in Fig. 6.10.

(They are equal to 90◦ when the object surface is parallel to the finger surface.)

One of the major challenges in the use of optical sensors is that intrinsic surface

properties (such as reflectivity, diffusivity, etc.) cause the relationship between the

raw sensor signal and the surface pose to vary significantly across different surface

types. For that reason, prior work using short-range proximity sensors to find surface

pose has focused on using multiple direct models obtained by performing regression

on empirical data. This data is gathered by recording sensor array readings for each

relevant surface in turn, placed at a comprehensive set of known surface poses [10].

In particular, [10, 106, 179] both use a least-squares polynomial fit of data taken for

a known surface or group of similar surfaces to directly estimate surface pose given

sensor readings. However, acquiring enough data to successfully model a new surface

is extremely time-consuming, and having to do so for every potential surface that

might be encountered is prohibitive. In practical grasping scenarios, we need to be

able to deal with unknown and never-before-encountered surfaces.

Reference Forward Model

As opposed to fully characterizing every surface with a separate model, we use a

single reference model that is scaled with an estimate of the object’s IR reflectivity

4Sensor 4, which is offset by 45◦ to increase the field of view, is not included in this sensor
model because it rarely focuses on the same flat surface as the other three. As a stand-alone sensor,
it is nevertheless independently useful, particularly when the peak expected value (object surface
reflectivity) is known. For instance, it can be used to prevent unexpected collisions with objects while
moving, or even to move to a fixed distance from a table or other surface with known orientation.
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parameter in order to obtain an approximate forward model for the specific object

of interest.5 By scaling with the estimated peak value, the model becomes roughly

invariant to surface brightness.

For this work, the calibration data was taken using a Kodak grey card, which is

a surface often used to adjust white balance in photography. The data consists of

1904 samples of o taken at distance values ranging from 0.5 cm to 3.4 cm, xrot values

ranging from 30◦ to 110◦, and zrot values ranging from 40◦ to 140◦. Fig. 6.11 shows

the calibration data.

Figure 6.11: Calibration Data. (Top row) plots xrot vs. energy for all three sensors,
with binned distances represented by different colors (distance bin centers in mm:
green=5, blue=9, cyan=13, magenta=19, yellow=24, black=29, burlywood=34).
(Bottom row) shows zrot vs. energy for all three sensors.

5Estimation of the surface reflectivity value is not particularly onerous to collect, as a single grasp
of the object, particularly with the use of raw values to attempt to align at least one finger with
the surface of the object, is sufficient to collect the required value. Alternatively, an estimate of the
peak value could be obtained by observing the object with an IR camera or with a laser rangefinder
that provides IR intensity values.



6.5. OPTICAL PROXIMITY SENSORS 157

Figure 6.12: Locally weighted linear regression on calibration data. The plot shows
energy values for one sensor at a fixed distance and varying x and z orientation. Green
points are recorded data; red points show the interpolated and extrapolated estimates
of the model.

Belief State Model

In order to address the sensitivity of the direct model to the object surface char-

acteristics, we use an empirical forward sensor model and a probabilistic estimation

process to derive the current best estimate for s. In our setting, as our robot hand is

executing a grasp trajectory, we take many sensor readings with fingers at different

(known) locations, and use the sensor readings, the finger positions, and our empirical

sensor model to update a belief state (a probability distribution over possible values

of s) at each time step.

Here, we assume that the object is static during a grasp. This is a reasonable

assumption due to the fact that because we are using proximity or ‘pre-touch’ sen-

sors, the actual grasp and sensing procedure does not make contact with the object

prior to complete closure of the grasp and thus does not actively cause any object
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displacements. In addition, we assume that the surface seen under each finger is

locally planar throughout the entire grasp process.6

For each finger, let S be the set of all possible states s, and let st, ot and at be the

state, sensor readings (observation), and hand pose (actions) at time t, respectively.

At all times, we will track the belief state bt := P (s0|o1...ot, a1...at), the probability

distribution over all possible surface poses in S seen at the first time step, given

all observations and hand poses since. We assume that our sensor observations at

different times are conditionally independent given the surface pose:

P (s0|o1...oT , a1...aT ) =
T
∏

t=1

P (s0|ot, at) (6.3)

Observation Model

An essential part of finding the most likely surface pose is having a model for how

likely it is that we could have seen the current sensor readings if that pose were true.

Specifically, the quantity we are looking for is P (ot|at, st), the probability of seeing

the sensor readings we obtained at time t (ot) given the current hand configuration

(at) and a particular surface pose (st). For this, we need a function mapping states

to observations, C(s) = o. We use locally weighted linear regression on our scaled

calibration data set to estimate o given s. An example of the values obtained using

locally weighted linear regression is shown in Fig. 6.12, where the green points are

actual data and the red points are estimated values. Each estimated point uses a plane

derived from only the 8 closest actual data points. Also, because extrapolation using

locally weighted linear regression is extremely poor, the estimated point is clipped to

be no greater than the highest of those 8 values, and no less than the lowest.

We then assume that the estimated model values are correct (for a given st, we

expect to see the model-estimated ot), and that any deviations we see in the actual

sensor readings, ǫ = ot − C(st), are due to Gaussian noise, ǫ ∼ N(0, σ2). This as-

sumption is wildly inaccurate, as the errors are in fact systematic, but this assumption

6Even when the surface under the finger changes and the old data becomes erroneous, the esti-
mates would get progressively better as more data from the new surface is observed. It is also simple
to place a higher weight on new data, to make the adjustment faster.
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nonetheless allows one to find the closest alignment of the observed o points to the

scaled calibration model without any assumptions about surface characteristics. For

our experiments, sensor readings were scaled to vary from 1 to 100, and σ was set to

be 25, since we expect significant deviations from our model values.

Inference

At each time step, we wish to compute an estimate ŝt of the current state. The states,

S, are discretized to a uniform grid. We can represent bt as a grid of probabilities

that sum to 1, and update the belief state probabilities at each time step using our

actions and observations as we would any Bayesian filter.

More specifically, the belief state update is performed as follows:

bt =P (s0|o1...ot, a1...at)

=
P (ot|a0, at, s0)P (s0|o1...ot−1, a1...at−1)

P (ot)

=
P (ot|at, st)bt−1

P (ot)
(6.4)

We assume a uniform prior on the sensor readings, and thus the denominator can be

normalized out. We then find the expected value of the state s0 as follows:

ŝ0 = E(s0) =
∑

s0

P (s0|o1...ot, a1...at)s0 (6.5)

We can compute ŝt from ŝ0 using the hand kinematics and the known hand positions

at and a0.

The advantage of combining observations in this manner is that, while the actual

sensor readings we expect to see vary greatly from surface to surface, readings across

different sensors in the array vary in a similar way with respect to orientation changes

for all surfaces. Thus, a number of observations over a wide range of different values

of s can be used to align a new set of observations with a model that is not quite right.

The s with expected (model) observations that align best with the actual observations

is generally the one with the highest likelihood, even with large model error.
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Figure 6.13: A sequence showing the grasp trajectory chosen by our algorithm. Ini-
tially, the fingers are completely open; as more data comes, the estimates get better,
and the hand turns and closes the finger in such a way that all the fingers touch the
object at the same time.

6.5.3 Reactive grasp closure controller

To verify the usefulness of our ‘pre-grasp’ proximity sensors, a reactive grasp closure

controller was designed and implemented that uses the proximity data to move the

fingers such that: 1) they do not collide with the object, and 2) they close simulta-

neously, forming a symmetric grasp configuration around a pre-specified grasp point.

This ability is aimed at achieving successful grasps even in the presence of significant

uncertainty about the object geometry, and at allowing the sensor interpretation ap-

proach to safely collect data to improve the surface estimates.

The hierarchical control architecture used here composes two reactive control ele-

ments that run asynchronously and that control separate aspects of the grasp closure

process. At the bottom level, a finger distance controller controls the fingers to main-

tain approximately equal distances to the object surface. On top of this control

element, a kinematic conditioning controller controls the arm to center the object

within the hand and to cause the fingers to be parallel to the surface.
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Figure 6.14: Different objects on which we present our analysis of the model predic-
tions. See Section 6.5.4 for details.

Table 6.4: Model Test Experiment Error

dist(cm) xrot(
◦) zrot(

◦)

Brown Wood Bowl .35 4.4 13.5
Beige Plastic Bowl .34 4.4 23.0
Black Plastic Box .49 10.3 16.5
Blue Plastic Box .59 5.3 21.7
Cardboard Box .20 3.8 14.4
Yellow Box .43 3.6 17.3

Average .40 5.3 17.7

6.5.4 Experiments

We will first evaluate the ability of our algorithm to model sensor data in Section 6.5.4.

Then we will use the model to perform grasping experiments in Section 6.5.4.

The sensors described in Section 6.5.1 were mounted onto the finger tips of a

Barrett hand. This manipulator has a total of 4 degrees of freedom (three fingers

each with one degree of freedom, and a finger “spread”). The hand was attached to

a 7-dof arm (WAM, by Barrett Technologies) mounted on the STAIR (STanford AI

Robot) platform.

Prediction Model

As a test of our estimation method, we placed the Barrett hand at known positions

relative to a number of commonly found objects of various materials. (See Fig. 6.14

for their pictures.) Our test data consisted of three different orientations for each

object: parallel to the fingers, +10◦ rotation, and −20◦ rotation. The fingers were
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then made to close slowly around the object until each finger nearly touched the

surface. Sets of 100 raw sensor readings were taken every 1.2 degrees of finger base

joint bend, and for every 1.2 degrees of finger spread (up to at most 17 degrees) and

averaged. Results showing errors in the final estimates of (d, xrot, zrot) are in Table

6.4.

Table 6.4 shows that our model is able to predict the distances with an average

error of 0.4cm. We are also able to estimate xrot reasonably accurately, with an

average error of 5.3◦. The high error in xrot in the case of the black plastic box can be

attributed to the fact that the first finger in one run did not see the same surface the

entire time, which is a requirement for reasonable predictions with our model. Note

that these objects have significantly different surface properties, and other than the

peak sensor value, no other surface characteristics were assumed. High-reflectance

surfaces tended to do worse than matte surfaces due to significant deviation from

the calibration model. Nonetheless, our experiments show that we are able to make

reasonable predictions by the time the fingers touch the surface.

The higher errors in zrot are a consequence of the movements used during the

data collection and estimation process. Since the sensor interpretation approach uses

belief updates to determine the maximum likelihood orientation, the quality of the

resulting estimates depends on the proximity data encountered along the fingers’

trajectories, with larger variations in the local geometry resulting in more accurate

estimates. In the procedure used here to gather the test data, a wide range of xrot

angles was encountered within the useful range of the sensors due to the strong

curling of the Barrett fingers. On the other hand, only a very limited range of

zrot angles were correctly observed due to the significantly smaller variation available

using the hand’s spread angle. Furthermore, most spread actions moved the fingers to

positions significantly further from the object, often resulting in sensor readings that

were no longer observable. While this is a problem in the test data and illustrates the

advantage of active sensing strategies, its cause should be largely alleviated when using

the grasp closure controller to establish the initial grasp, due to the ability of the finger

distance controller to maintain the fingers at a distance that provides usable results

throughout the finger spread operation. Additionally, the inclusion of arm motions
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through the use of the kinematic conditioning controller should further enhance the

range of zrot angles encountered during a grasp, and thus allow for somewhat better

zrot estimates.

Grasping Experiments

Our goal was to focus on the final approach of grasping using proximity sensors. Our

system could be used in a variety of settings, including the point-and-click approach

of [60], where a laser pointer is used to highlight an object for a robot to pick it up,

or combined with long range vision sensors that select optimal grasp points [136].

In this experiment, we placed a variety of objects (weighing less than 3 pounds)

in known locations on a table (see Fig. 6.16), with some objects flush against each

other. These objects are of a variety of shapes, ranging from simple boxes or bowls,

to more complicated shapes such as a ski boot.

The robot moves the hand to the approximate center of the object and executes a

grasp strategy,7 using our controller to move the hand and the fingers in response to

estimated distances from the sensors and the pose estimation algorithm. The robot

then picks up the object and moves it to verify that the grasp is stable. (See Fig. 6.13

and Fig. 6.16 for some images of the robot picking up the objects.)

Figure 6.15: Failure cases: (a) Shiny can, (b) Transparent cup

7One could envision using better strategies, such as those based on vision-based learning [140,
141], for moving the hand to a grasping point on the object.
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Figure 6.16: Snapshots of the robot picking up different objects.

Note that our objects are of a variety of shapes and made of a variety of mate-

rials. Out of the 26 grasping trials performed on 21 unique objects,8 our grasping

system failed three times. Two of these failures were due to extreme surface types: a

transparent cup and a highly reflective aluminum can (Fig. 6.15). To address these

cases, our optical-based proximity sensors could be combined with a capacitive-based

system that is good at detecting metallic or glass surfaces. The third object was

a ski-boot, for which our approach worked perfectly; however, due to the object’s

weight, our robot was unable to lift it up.

A video of the grasp experiments is available at the following url:

http://stair.stanford.edu/proximitygrasping/

In the video, the hand rotates the fingers in many cases to be approximately

8Procedure used to choose the objects : We asked a person not associated with the project to bring
objects larger than about 8 inches in length and less than 3 pounds from our lab and different offices.
No other selection criterion was specified, and therefore we believe that our objects represented a
reasonably unbiased sample of commonly found objects.
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parallel to the object surface and causes the fingers to contact at nearly the same

time, thereby improving the grasp.

6.6 Applications to opening new doors

Recently, there is growing interest in using robots not only in controlled factory en-

vironments but also in unstructured home and office environments. In the past,

successful navigation algorithms have been developed for robots in these environ-

ments. However, to be practically deployed, robots must also be able to manipulate

their environment to gain access to new spaces. In Klingbeil, Saxena, and Ng [64],

we presented our work towards enabling a robot to autonomously navigate anywhere

in a building by opening doors, even those it has never seen before.

Most prior work in door opening (e.g., [122, 110]) assumes that a detailed 3D

model of the door (and door handle) is available, and focuses on developing the

control actions required to open one specific door. In practice, a robot must rely on

only its sensors to perform manipulation in a new environment.

Our methods for grasping, described in previous chapters use a vision-based learn-

ing approach to choose a point at which to grasp an object. However, a task such

as opening a door is more involved in that it requires a series of manipulation tasks;

the robot must first plan a path to reach the handle and then apply a series of

forces/torques (which may vary in magnitude and direction) to open the door. The

vision algorithm must be able to infer more information than a single grasp point to

allow the robot to plan and execute such a manipulation task.

In this chapter, we focus on the problem of manipulation in novel environments

where a detailed 3D model of the object is not available. We note that objects, such

as door handles, vary significantly in appearance, yet similar function implies similar

form. Therefore, we will design vision-based learning algorithms that attempt to

capture the visual features shared across different objects that have similar functions.

To perform a manipulation task, such as opening a door, the robot end-effector must

move through a series of way-points in cartesian space, while achieving the desired

orientation at each way-point, in order to turn the handle and open the door. A
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small number of keypoints such as the handle’s axis of rotation and size provides

sufficient information to compute such a trajectory. We use vision to identify these

“visual keypoints,” which are required to infer the actions needed to perform the

task. To open doors or elevators, there are various types of actions a robot can

perform; the appropriate set of actions depends on the type of control object the

robot must manipulate, e.g., left/right turn door handle, spherical doorknob, push-

bar door handle, elevator button, etc. Our algorithm learns the visual features that

indicate the appropriate type of control action to use.

Finally, to demonstrate the robustness of our algorithms, we provide results from

extensive experiments on 20 different doors in which the robot was able to reliably

open new doors in new buildings, even ones which were seen for the first time by the

robot (and the researchers working on the algorithm).

6.6.1 Related work

There has been a significant amount of work done in robot navigation [174]. Many

of these use a SLAM-like algorithm with a laser scanner for robot navigation. Some

of these works have, in fact, even identified doors [34, 184, 166, 5, 1]. However, all of

these works assumed a known map of the environment (where they could annotate

doors); and more importantly none of them considered the problem of enabling a

robot to autonomously open doors.

In robotic manipulation, most work has focused on developing control actions for

different tasks, such as grasping objects [7], assuming a perfect knowledge of the envi-

ronment (in the form of a detailed 3D model). Recently, some researchers have started

using vision-based algorithms for some applications, e.g. [69]. These algorithms do

not apply to manipulation problems where one needs to estimate a full trajectory of

the robot and also consider interactions with the object being manipulated.

There has been some recent work in opening doors using manipulators [128, 108,

62, 122, 110, 55]; however, these works focused on developing control actions assuming

a pre-surveyed location of a known door handle. In addition, these works implicitly

assumed some knowledge of the type of door handle, since a turn lever door handle
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must be grasped and manipulated differently than a spherical door knob or a push-bar

door.

Little work has been done in designing autonomous elevator-operating robots.

Notably, [91] demonstrated their robot navigating to different floors using an elevator,

but their training phase (which requires that a human must point out where the

appropriate buttons are and the actions to take for a given context) used the same

elevator as the one used in their test demonstration. Other researchers have addressed

the problem of robots navigating in elevators by simply having the robot stand and

wait until the door opens and then ask a human to press the correct floor button [29].

Table 6.5: Visual keypoints for some manipulation tasks.

Manipulation task Visual Keypoints

Turn a door handle 1. Location of the handle
2. Its axis of rotation
3. Length of the handle
4. Type (left-turn,

right-turn, etc.)

Press an 1. Location of the button
elevator button 2. Normal to the surface

Open a 1. Location of the tray
dishwasher tray 2. Direction to pull or push it

In the application of elevator-operating robots, some robots have been deployed

in places such as hospitals [130, 30]. However, expensive modifications must be made

to the elevators, so that the robot can use a wireless communication to command the

elevator. For opening doors, one can also envision installing automatic doors, but our

work removes the need to make these expensive changes to the many elevators and

doors in a typical building.

In contrast to many of these previous works, our work does not assume existence

of a known model of the object (such as the door, door handle, or elevator button) or

a precise knowledge of the location of the object. Instead, we focus on the problem of

manipulation in novel environments, in which a model of the objects is not available,

and one needs to rely on noisy sensor data to identify visual keypoints. Some of

these keypoints need to be determined with high accuracy for successful manipulation
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(especially in the case of elevator buttons).

6.6.2 Algorithm

Consider the task of pressing an elevator button. If our perception algorithm is able

to infer the location of the button and a direction to exert force in, then one can

design a control strategy to press it. Similarly, in the task of pulling a drawer, our

perception algorithm needs to infer the location of a point to grasp (e.g., a knob or a

handle) and a direction to pull. In the task of turning a door handle, our perception

algorithm needs to infer the size of the door handle, the location of its axis, and a

direction to push, pull or rotate.

More generally, for many manipulation tasks, the perception algorithm needs to

identify a set of properties, or “visual keypoints” which define the action to be taken.

Given these visual keypoints, we use a planning algorithm that considers the kinemat-

ics of the robot and the obstacles in the scene, to plan a sequence of control actions

for the robot to carry out the manipulation task.

Dividing a manipulation task into these two parts: (a) an algorithm to identify

visual keypoints, and (b) an algorithm to plan a sequence of control actions, allows

us to easily extend the algorithm to new manipulation tasks, such as opening a

dishwasher. To open a dishwasher tray, the visual keypoints would be the location of

the tray and the desired direction to move it. This division acts as a bridge between

state of the art methods developed in computer vision and the methods developed in

robotics planning and control.

6.6.3 Identifying visual keypoints

Objects such as door handles vary significantly in appearance, yet similar function

implies similar form. Our learning algorithms will, therefore, try to capture the visual

features that are shared across different objects having similar function.

In this paper, the tasks we consider require the perception algorithm to: (a) locate

the object, (b) identify the particular sub-category of object (e.g., we consider door

handles of left-turn or right-turn types), and (c) identify some properties such as the
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surface normal or door handle axis of rotation. An estimate of the surface normal

helps indicate a direction to push or pull, and an estimate of the door handle’s axis

of rotation helps in determining the action to be performed by the arm.

In the field of computer vision, a number of algorithms have been developed that

achieve good performance on tasks such as object recognition [160, 132]. Perception

for robotic manipulation, however, goes beyond object recognition in that the robot

not only needs to locate the object but also needs to understand what task the object

can perform and how to manipulate it to perform that task. For example, if the

intention of the robot is to enter a door, it must determine the type of door handle

(i.e., left-turn or right-turn) and an estimate of its size and axis of rotation, in order

to compute the appropriate action (i.e., to turn the door handle left and push/pull).

Manipulation tasks also typically require more accuracy than what is currently

possible with most classifiers. For example, to press an elevator button, the 3D loca-

tion of the button must be determined within a few millimeters (which corresponds to

a few pixels in the image), or the robot will fail to press the button. Finally, another

challenge in designing perception algorithms is that different sensors are suitable for

different perception tasks. For example, a laser range finder is more suitable for build-

ing a map for navigation, but a 2D camera is a better sensor for finding the location

of the door handle. We will first describe our image-based classifier.

Object Recognition

To capture the visual features that remain consistent across objects of similar function

(and hence appearance), we start with a 2D sliding window classifier. We use a

supervised learning algorithm that employs boosting to compute a dictionary of Haar

features.

In detail, the supervised training procedure first randomly selects ten small win-

dows to produce a dictionary of Haar features [176]. In each iteration, it trains decision

trees using these features to produce a model while removing irrelevant features from

the dictionary.

There are a number of contextual properties that we take advantage of to improve

the classification accuracy. Proximity of objects to each other and spatial cues, such
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Figure 6.17: Results on test set. The green rectangles show the raw output from the
classifiers, and the blue rectangle is the one after applying context.

as that a door handle is less likely to be found close to the floor, can be used to learn

a location based prior (partly motivated by [176]).

We experimented with several techniques to capture the fact that the labels (i.e.,

the category of the object found) have correlation. An algorithm that simply uses

non-maximal suppression of overlapping windows for choosing the best candidate

locations resulted in many false positives—12.2% on the training set and 15.6% on

the test set. Thus, we implemented an approach that takes advantage of the context

for the particular objects we are trying to identify. For example, we know that doors

(and elevator call panels) will always contain at least one handle (or button) and

never more than two handles. We can also expect that if there are two objects, they

will lie in close proximity to each other and they will likely be horizontally aligned (in

the case of door handles) or vertically aligned (in the case of elevator call buttons).

This approach resulted in much better recognition accuracy.

Figure 3 shows some of the door handles identified using our algorithm. Table 6.6
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Table 6.6: Accuracies for recognition and localization.

Recognition Localization

Door handle 94.5% 93.2%

Elevator buttons 92.1% 91.5%

shows the recognition and localization accuracies. “Localization accuracy” is com-

puted by assigning a value of 1 to a case where the estimated location of the door

handle or elevator button was within 2 cm of the correct location and 0 otherwise. An

error of more than 2 cm would cause the robot arm to fail to grasp the door handle

(or push the elevator button) and open the door.

Once the robot has identified the location of the object in an image, it needs to

identify the object type and infer control actions from the object properties to know

how to manipulate it. Given a rectangular patch containing an object, we classify

what action to take. In our experiments, we considered three types of actions: turn

left, turn right, and press. The accuracy of the classifier that distinguishes left-turn

from right-turn handles was 97.3%.

Estimates from 3D data

Our object recognition algorithms give a 2D location in the image for the visual

keypoints. However, we need their corresponding 3D locations to be able to plan a

path for the robot.

In particular, once an approximate location of the door handle and its type is

identified, we use 3D data from the stereo camera to estimate the axis of rotation

of the door handle. Since, the axis of a right- (left-) turn door handle is the left-

(right-) most 3D point on the handle, we build a logistic classifier for door-axis using

two features—distance of the point from the door and its distance from the center

(towards left or right). Similarly, we use PCA on the local 3D point cloud to estimate

the orientation of the surface—required in cases such as elevator buttons and doors

for identifying the direction to apply force.

However, the data obtained from a stereo sensor is often noisy and sparse in that
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the stereo sensor fails to give depth measurements when the areas considered are

textureless, e.g., blank elevator walls [146]. Therefore, we also present a method

to fuse the 2D image location (inferred by our object recognition algorithm), with a

horizontal laser scanner (available on many mobile robots) to obtain the 3D location of

the object. Here, we make a ground-vertical assumption—that every door is vertical

to a ground-plane [26].9 This enables our approach to be used on robots that do not

have a 3D sensor such as a stereo camera (that are often more expensive).

Planning and Control

Given the visual keypoints and the goal, we build upon a Probabilistic RoadMap

(PRM) [159] motion planning algorithm for obtaining a smooth, collision-free path

for the robot to execute.

6.6.4 Experiments

We used a Voronoi-based global planner for navigation; this enabled the robot to

localize itself in front of and facing a door within 20cm and ±20 degrees. An experi-

ment began with the robot starting at a random location within 3m of the door. It

used lasers to navigate to the door, and our vision-based classifiers to find the handle.

In the experiments, our robot saw all of our test locations for the first time. The

training images for our vision-based learning algorithm were collected in completely

separate buildings, with different doors and door handle shapes, structure, decoration,

ambient lighting, etc. We tested our algorithm on two different buildings on a total

9In detail, a location in the image corresponds to a ray in 3D, which would intersect the plane
in which the door lies. Let the planar laser readings be denoted as li = (x(θi), y(θi)). Let the origin
of the camera be at c ∈ R

3 in arm’s frame, and let r ∈ R
3 be the unit ray passing from the camera

center through the predicted location of the door handle in the image plane. I.e., in the robot frame,
the door handle lies on a line connecting c and c + r.

Let T ∈ R
2×3 be a projection matrix that projects the 3D points in the arm frame into the plane

of the laser. In the laser plane, therefore, the door handle is likely to lie on a line passing through
Tc and T (c + r).

t∗ = mint

∑

i∈Ψ
||T (c + rt) − li||

2
2 (6.6)

where Ψ is a small neighborhood around the ray r. Now the location of the 3D point to move the
end-effector to is given by s = c + rt∗.
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Table 6.7: Error rates obtained for the robot opening the door in a total number of
34 trials.

Door Num of Recog. Class. Localiza- Success-
Type trials (%) (%) tion (cm) rate

Left 19 89.5% 94.7% 2.3 84.2%
Right 15 100% 100% 2.0 100%

Total 34 94.1% 97.1% 2.2 91.2%

of five different floors (about 20 different doors). Many of the test cases were also run

where the robot localized at different angles, typically between -30 and +30 degrees

with respect to the door, to verify the robustness of our algorithms.

In a total of 34 experiments, our robot was able to successfully open the doors

31 out of 34 times. Table 6.7 details the results; we achieved an average recognition

accuracy of 94.1% and a classification accuracy of 97.1%. We define the localization

error as the mean error (in cm) between the predicted and actual location of the door

handle. This led to a success-rate (fraction of times the robot actually opened the

door) of 91.2%. Notable failures among the test cases included glass doors (erroneous

laser readings), doors with numeric keypads, and very dim/poor lighting conditions.

In future work, we plan to use active vision [57], which takes visual feedback into

account while objects are being manipulated and thus provides complementary infor-

mation that would hopefully improve the performance on these tasks.

Videos of the robot opening new doors are available at:

http://ai.stanford.edu/∼asaxena/openingnewdoors

6.7 Discussion

We presented a learning algorithm that, given partial models of the scene from 3-d

sensors, selects a grasp—that is, a configuration of the robot’s arm and fingers—to

try to pick up an object. We tested our approach on a robot grasping a number of

objects cluttered backgrounds.

We also presented a novel gripper-mounted optical proximity sensor that enables

stable grasping of common objects using pre-touch pose estimation. components. We
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Figure 6.18: Some experimental snapshots showing our robot opening different types
of doors.

converted the data provided by these sensors into pose estimates of nearby surfaces

by a probabilistic model that combines observations over a wide range of finger/hand

configurations. We validated the system with experiments using a Barrett hand,

which showed improvements in reactive grasping.

To navigate and perform tasks in unstructured environments, robots must be able

to perceive their environments to identify what objects to manipulate and how they

can be manipulated to perform the desired tasks. We presented a framework that

identifies some visual keypoints using our vision-based learning algorithms. Our robot

was then able to use these keypoints to plan and execute a path to perform the desired

task. This strategy enabled our robot to open a variety of doors, even ones it had

not seen before.
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Conclusions

One of the most basic perception abilities for a robot is perceiving the 3D shape of

an environment. This is also useful in a number of robotics applications such as in

navigation and in manipulation.

In this dissertation, we described learning algorithms for depth perception from

a single still image. The problem of depth perception is fundamental to computer

vision, one that has enjoyed the attention of many researchers and seen significant

progress in the last few decades. However, the vast majority of this work, such as

stereopsis, has used multiple image geometric cues to infer depth. In contrast, single-

image cues offer a largely orthogonal source of information, one that had heretofore

been relatively underexploited.

We proposed an algorithm for single image depth perception that used a machine

learning technique called Markov Random Field (MRF). It successfully modeled the

spatial dependency between different regions in the image. The estimated 3D models

were both quantitatively accurate and visually pleasing. Further, our algorithm was

able to accurately estimate depths from images of a wide variety of environments.

We also studied the performance of our algorithm through a live deployment in the

form of a web service called Make3D. Tens of thousands of users successfully used it

to automatically convert their own pictures into 3D models.

Given that depth and shape perception appears to be an important building block

for many other applications, such as object recognition, image compositing and video

175
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retrieval, we believe that monocular depth perception has the potential to improve

all of these applications, particularly in settings where only a single image of a scene

is available.

One such application that we described in this dissertation was to improve the

performance of 3D reconstruction from multiple views. In particular, we considered

stereo vision, where the depths are estimated by triangulation using two images. Over

the past few decades, researchers have developed very good stereo vision systems. Al-

though these systems work well in many environments, stereo vision is fundamentally

limited by the baseline distance between the two cameras. We found that monocular

cues and (purely geometric) stereo cues give largely orthogonal, and therefore com-

plementary, types of information about depth. Stereo cues are based on the difference

between two images and do not depend on the content of the image. On the other

hand, depth estimates from monocular cues are entirely based on the evidence about

the environment presented in a single image.

We investigated how monocular cues can be integrated with any reasonable stereo

system, to obtain better depth estimates than the stereo system alone. Our learning

algorithm (again using Markov Random Fields) modeled the depth as a function of

both single image features as well as the depths obtained from stereo triangulation if

available, and combined them to obtain better depth estimates. We then also created

3D models from multiple views (which are not necessarily from a calibrated stereo

pair) to create a larger 3D model.

We applied these ideas of depth perception to a challenging problem of obstacle

avoidance for a small robot navigating through a cluttered environment. For small-

sized robots, the size places a frugal payload restriction on weight and power supply.

In these robots, only light-weight small sensors that take less power could be used.

Cameras are an attractive option because they are small, passive sensors with low

power requirements.

We used supervised learning to learn monocular depth estimates (distances to

obstacles in each steering direction) from a single image captured by the onboard

camera, and used them to drive an RC car at high speeds through the environment.

The vision system was able to give reasonable depth estimate on real image data,
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and a control policy trained in a graphical simulator worked well on real autonomous

driving. Our method was able to avoid obstacles and drive autonomously in novel

environments in various locations.

We then considered the problem of grasping novel objects. Grasping is an impor-

tant ability for robots and is necessary in many tasks, such as for household robots

cleaning up a room or unloading items from a dishwasher. Most of the prior work

had assumed that a known (and registered) full 3D model of the object is available.

In reality, it is quite hard to obtain such a model. We presented a supervised learning

algorithm that predicts, directly as a function of the images, a point at which to grasp

the object. In our experiments, the algorithm generalized very well to novel objects

and environments, and our robot successfully grasped a wide variety of objects in

different environments such as dishwashers, office and kitchen.

Next, we considered more complex arms and hands (e.g., multi-fingered hands

where one has to not only choose a 3D position to grasp the object at, but also address

the high degree-of-freedom problem of choosing the positions of all the fingers. This

is further complicated by presence of significant amounts of clutter. A key challenge

in this setting is that a full 3D model of the scene is typically not available. Instead,

a robot’s sensors (such as a camera or a depth sensor) can usually estimate only the

shape of the visible portions of the scene. We presented an algorithm that, given such

partial models of the scene, selects a grasp—that is, a configuration of the robot’s

arm and fingers—to try to pick up an object.

In order to improve performance of grasping, we also presented a novel gripper-

mounted optical proximity sensor that enabled stable grasping of common objects

using pre-touch pose estimation. These sensors are a nice complement to the long-

range vision sensors (such as the cameras).

A household robot not only needs to pick up objects, but it also needs to navigate

and perform other manipulation tasks. One such manipulation task is the task of

opening new doors. We presented a method that identifies some visual keypoints

using vision. This enabled our robot to navigate to places inaccessible before by

opening doors, even the ones it had not seen before.
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